


With the continuous development of data science and deep learning, Python, as one of the mainstream programming languages, its scientific computing library numpy is also constantly innovating. Recently, numpy has released a new version that contains some new features and performance improvements. In this post, we’ll take a deep dive into the new version of numpy and introduce some of its important features and improvements.
- shuffle function improvements
Before numpy 1.17.0, the shuffle function would reorder the array elements in random order. However, because the implementation of the shuffle function is different from the standard random algorithm, it may affect performance under certain circumstances. In numpy 1.17.0, the shuffle function was updated to use a new random algorithm, improving its performance and randomness.
The following is a sample code that shows how to use the shuffle function in numpy 1.17.0:
import numpy as np # 创建一个有序数组 arr = np.arange(10) # 将数组随机排序 np.random.shuffle(arr) print(arr)
Output results:
[2 6 5 7 0 9 3 1 4 8]
- New array deduplication Method
Numpy version 1.13.0 introduces a new array deduplication method unique, which can handle duplicates faster and easier. In previous versions, numpy used the sort function to sort an array before removing duplicates. However, this approach may cause performance degradation when working with large arrays. In numpy 1.13.0, the unique function uses a hash table algorithm, which has better performance when handling duplicates.
The following is a sample code showing how to use the unique function in numpy 1.13.0:
import numpy as np # 创建一个有重复项的数组 arr = np.array([1, 2, 3, 2, 4, 1, 5, 6, 4]) # 去掉数组中的重复项 arr = np.unique(arr) print(arr)
Output results:
[1 2 3 4 5 6]
- New method of array assignment
Numpy version 1.16.0 introduces a new array assignment method at, which can modify the elements of the array faster and more directly. In previous versions, numpy used loops for array modifications, which resulted in performance degradation. In numpy 1.16.0, the at function is implemented in C code and has higher performance.
The following is a sample code showing how to use the at function in numpy 1.16.0:
import numpy as np # 创建一个3x3的数组 arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) # 使用at函数修改数组元素 np.add.at(arr, [0, 1, 2], 1) print(arr)
Output results:
[[ 2 3 4] [ 5 6 7] [ 8 9 10]]
- New method of array calculation
Numpy version 1.14.0 introduces some new array calculation methods, including matmul, einsum and tensordot. These methods make it easier to perform tasks such as matrix calculations and tensor calculations. In previous versions, numpy required the use of a variety of functions to accomplish these tasks, but the new method makes it faster and simpler.
The following is a sample code showing how to use the matmul function for matrix calculations in numpy 1.14.0:
import numpy as np # 创建两个矩阵 a = np.array([[1, 2], [3, 4]]) b = np.array([[5, 6], [7, 8]]) # 使用matmul函数计算矩阵积 c = np.matmul(a, b) print(c)
Output results:
[[19 22] [43 50]]
- Performance improvement
In addition to the above new features, the new version of numpy also contains some performance improvements. Among them, the most significant improvements are in array copy and array view. In previous versions, numpy required additional copy operations to create array views, resulting in performance degradation. In the latest versions, numpy has improved performance by using a faster method for creating array views. In addition, numpy has also optimized the transpose operation, in1d function and sort function, etc., and has also achieved good performance improvements.
To sum up, the new version of numpy contains some important new features and performance improvements, which make numpy more convenient and efficient. If you need to handle large arrays or perform data science and deep learning tasks, then be sure to upgrade to the latest version of numpy for better performance and functionality.
The above is the detailed content of Interpretation of numpy version updates: new features and improved performance. For more information, please follow other related articles on the PHP Chinese website!

PHP8.3发布:新特性一览随着技术的不断发展和需求的不断变化,编程语言也在不断更新和改进。作为一种广泛应用于网络开发的脚本语言,PHP一直在不断进步,为开发者提供更强大和高效的工具。最近发布的PHP8.3版本带来了许多期待已久的新特性和改进,下面让我们来看一下这些新特性的一览。非空属性的初始化在过去的PHP版本中,如果一个类的属性没有被明确赋值,它的值

深入解析PHP8的新特性,助您掌握最新技术随着时间的推移,PHP编程语言一直在不断演进和改进。最近发布的PHP8版本为开发者提供了许多令人兴奋的新特性和改进,为我们的开发工作带来了更多便利和效率。在本文中,我们将深入解析PHP8的新特性,并提供具体的代码示例,旨在帮助您更好地掌握这些最新的技术。JIT编译器PHP8引入了JIT(Just-In-Time)编

PHP8.1引入的新的Redis扩展随着互联网的快速发展,大量的数据需要进行存储和处理。为了提高数据处理的效率和性能,缓存成为了一个不可或缺的部分。而在PHP开发中,Redis作为一种高性能的键值对存储系统,被广泛应用于缓存和数据存储的场景。为了进一步提升Redis在PHP中的使用体验,PHP8.1引入了新的Redis扩展,本文将介绍这一扩展的新增功能,并给

CSS3的新特性一览:如何使用CSS3实现过渡效果CSS3作为CSS的最新版本,在众多新特性中,最有趣和实用的应该是过渡效果(transition)。过渡效果可以让我们的页面在交互时更加平滑、漂亮,给用户带来良好的视觉体验。本文将介绍CSS3过渡效果的基本用法,并附带相应的代码示例。transition-property属性:指定需要过渡的CSS属性过渡效果

php8新特性有JIT 编译器、类型推导、命名参数、联合类型、属性、错误处理改进、异步编程支持、新的标准库函数和匿名类的扩展等。详细介绍:1、JIT编译器,PHP8引入了JIT编译器,这是一个重要的性能改进,JIT编译器可以对一些高频执行的代码进行实时编译和优化,从而提高运行速度;2、类型推导,PHP8引入了类型推导功能,允许开发者在声明变量时自动推导出变量的类型等等。

CSS3的新特性一览:如何使用CSS3实现水平居中布局在网页设计和布局中,水平居中布局是一项常见的需求。过去,我们经常使用复杂的JavaScript或CSS技巧实现此目的。然而,CSS3引入了一些新的特性,使得水平居中布局更加简单和灵活。本文将介绍一些CSS3的新特性,并提供一些代码示例,演示如何使用CSS3实现水平居中布局。一、使用flexbox布局fle

PHP8作为最新版本的PHP编程语言,引入了许多新的特性和改进,在底层开发原理方面做了一些重要的改变。本文将深入探讨PHP8的底层开发原理,并分析如何利用新特性提高代码性能和可靠性。首先,我们来了解一下PHP8的一些重要的底层开发原理。PHP8引入了JIT(Just-In-Time)编译器,这是一个动态编译器,可以将PHP代码即时转换为本地机器码,并在执行时

go语言的新特性有:1、Go模块,用于管理Go语言项目的依赖关系;2、错误处理,增加了一个新的错误类型error,使得错误处理更加灵活和简洁;3、上下文包,用于在goroutine之间传递请求范围的值;4、嵌入,即一个结构体可以嵌入到另一个结构体中;5、同步包,更好地控制goroutine之间的同步和通信;6、错误值,更好地区分不同类型的错误;7、泛型,让开发者编写更灵活。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.
