


In-depth analysis of the characteristics and advantages of the scrapy framework
The Scrapy framework is an open source Python crawler framework that can be used to create and manage applications that crawl data. It is one of the most popular crawler frameworks currently on the market. The Scrapy framework uses asynchronous IO for network requests, which can efficiently capture website data and has the advantages of scalability and stability.
This article will deeply analyze the characteristics and advantages of the Scrapy framework, and illustrate its efficient and stable operation through specific code examples.
- Easy to learn
The Scrapy framework uses Python language, which is easy to learn and has a low entry barrier. At the same time, it also provides complete documentation and sample code to facilitate users to get started quickly. The following is a simple Scrapy crawler example that can be used to obtain the titles and links of popular questions on Zhihu:
import scrapy class ZhihuSpider(scrapy.Spider): name = "zhihu" # 爬虫名 start_urls = [ 'https://www.zhihu.com/hot' ] # 起始网站链接 def parse(self, response): for question in response.css('.HotItem'): yield { 'title': question.css('h2::text').get(), 'link': question.css('a::attr(href)').get() }
In the above code, a crawler program named "zhihu" is defined by inheriting the scrapy.Spider class . The start_urls attribute is defined in the class, and the website links to be crawled are specified in a list. A parse() method is defined to parse the response and obtain the titles and links of popular questions through CSS selectors, and return the results as a dictionary yield.
- Asynchronous IO
The Scrapy framework uses asynchronous IO for network requests. It can send multiple asynchronous requests at the same time and return all responses immediately. This method greatly improves the speed and efficiency of the crawler. The following is a simple Scrapy asynchronous request code example:
import asyncio import aiohttp async def fetch(url): async with aiohttp.ClientSession() as session: async with session.get(url) as response: return await response.text() async def main(): urls = [ 'https://www.baidu.com', 'https://www.google.com', 'https://www.bing.com' ] tasks = [] for url in urls: tasks.append(asyncio.ensure_future(fetch(url))) responses = await asyncio.gather(*tasks) print(responses) if __name__ == '__main__': loop = asyncio.get_event_loop() loop.run_until_complete(main())
In the above code, the asynchronous request method is implemented through the asyncio library and aiohttp library. A fetch() asynchronous function is defined for sending requests, and the aiohttp library is used to implement an asynchronous HTTP client. A main() asynchronous function is defined to process urls, the Future object returned by fetch() is added to the task list, and finally the asyncio.gather() function is used to obtain the return results of all tasks.
- Extensibility
The Scrapy framework provides a wealth of extension interfaces and plug-ins. Users can easily add custom middleware, pipelines, downloaders, etc., thus Extend its functionality and performance. The following is an example of a simple Scrapy middleware:
from scrapy import signals class MyMiddleware: @classmethod def from_crawler(cls, crawler): o = cls() crawler.signals.connect(o.spider_opened, signal=signals.spider_opened) crawler.signals.connect(o.spider_closed, signal=signals.spider_closed) return o def spider_opened(self, spider): spider.logger.info('常规中间件打开: %s', spider.name) def spider_closed(self, spider): spider.logger.info('常规中间件关闭: %s', spider.name) def process_request(self, request, spider): spider.logger.info('常规中间件请求: %s %s', request.method, request.url) return None def process_response(self, request, response, spider): spider.logger.info('常规中间件响应: %s %s', str(response.status), response.url) return response def process_exception(self, request, exception, spider): spider.logger.error('常规中间件异常: %s %s', exception, request.url) return None
In the above code, a MyMiddleware middleware class is defined. A special from_crawler() function is defined in the class to handle the signal connection of the crawler program. The spider_opened() and spider_closed() functions are defined to handle the crawler's opening and closing signals. The process_request() and process_response() functions are defined for processing request and response signals. The process_exception() function is defined to handle exception information.
- Stability
The Scrapy framework is highly configurable and adjustable, and can adjust crawler details according to user needs, thus improving the stability and robustness of the Scrapy framework crawler. Great sex. The following is an example of Scrapy download delay and timeout configuration:
DOWNLOAD_DELAY = 3 DOWNLOAD_TIMEOUT = 5
In the above code, by setting the DOWNLOAD_DELAY parameter to 3, it means that you need to wait 3 seconds between each two downloads. By setting the DOWNLOAD_TIMEOUT parameter to 5, it means that if no response is received within 5 seconds, it will time out and exit.
Summary
The Scrapy framework is an efficient, scalable and stable Python crawler framework with the advantages of easy learning, asynchronous IO, scalability and stability. This article introduces the main features and advantages of the Scrapy framework through specific code examples. For users who want to develop efficient and stable crawler applications, the Scrapy framework is undoubtedly a good choice.
The above is the detailed content of In-depth analysis of the characteristics and advantages of the scrapy framework. For more information, please follow other related articles on the PHP Chinese website!

Pythonisbothcompiledandinterpreted.WhenyourunaPythonscript,itisfirstcompiledintobytecode,whichisthenexecutedbythePythonVirtualMachine(PVM).Thishybridapproachallowsforplatform-independentcodebutcanbeslowerthannativemachinecodeexecution.

Python is not strictly line-by-line execution, but is optimized and conditional execution based on the interpreter mechanism. The interpreter converts the code to bytecode, executed by the PVM, and may precompile constant expressions or optimize loops. Understanding these mechanisms helps optimize code and improve efficiency.

There are many methods to connect two lists in Python: 1. Use operators, which are simple but inefficient in large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use the = operator, which is both efficient and readable; 4. Use itertools.chain function, which is memory efficient but requires additional import; 5. Use list parsing, which is elegant but may be too complex. The selection method should be based on the code context and requirements.

There are many ways to merge Python lists: 1. Use operators, which are simple but not memory efficient for large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use itertools.chain, which is suitable for large data sets; 4. Use * operator, merge small to medium-sized lists in one line of code; 5. Use numpy.concatenate, which is suitable for large data sets and scenarios with high performance requirements; 6. Use append method, which is suitable for small lists but is inefficient. When selecting a method, you need to consider the list size and application scenarios.

Compiledlanguagesofferspeedandsecurity,whileinterpretedlanguagesprovideeaseofuseandportability.1)CompiledlanguageslikeC arefasterandsecurebuthavelongerdevelopmentcyclesandplatformdependency.2)InterpretedlanguageslikePythonareeasiertouseandmoreportab

In Python, a for loop is used to traverse iterable objects, and a while loop is used to perform operations repeatedly when the condition is satisfied. 1) For loop example: traverse the list and print the elements. 2) While loop example: guess the number game until you guess it right. Mastering cycle principles and optimization techniques can improve code efficiency and reliability.

To concatenate a list into a string, using the join() method in Python is the best choice. 1) Use the join() method to concatenate the list elements into a string, such as ''.join(my_list). 2) For a list containing numbers, convert map(str, numbers) into a string before concatenating. 3) You can use generator expressions for complex formatting, such as ','.join(f'({fruit})'forfruitinfruits). 4) When processing mixed data types, use map(str, mixed_list) to ensure that all elements can be converted into strings. 5) For large lists, use ''.join(large_li

Pythonusesahybridapproach,combiningcompilationtobytecodeandinterpretation.1)Codeiscompiledtoplatform-independentbytecode.2)BytecodeisinterpretedbythePythonVirtualMachine,enhancingefficiencyandportability.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Atom editor mac version download
The most popular open source editor

SublimeText3 English version
Recommended: Win version, supports code prompts!

Notepad++7.3.1
Easy-to-use and free code editor
