Home >Computer Tutorials >Computer Knowledge >Mutual conversion relationship of trigonometric functions
sec (secant) is the reciprocal of the sine value
csc (cosecant) is the reciprocal of the cosine value
sin (sine) Opposite side/hypotenuse of a right triangle
cos (cosine) limb/hypotenuse of a right triangle
tan (tangent) the opposite/adjacent side of a right triangle
cot (cotangent) adjacent/opposite side of a right triangle
Two angles and formula
sin(A B) = sinAcosB cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB sinAsinB tan(A B) = (tanA tanB)/(1-tanAtanB) tan( A-B) = (tanA-tanB)/(1 tanAtanB) cot(A B) = (cotAcotB-1)/(cotB cotA) cot(A-B) = (cotAcotB 1)/(cotB-cotA)
Integration and difference
sinα62616964757a686964616fe58685e5aeb931333332636432sinβ = [cos (α-β)-cos (α β)] /2; cosαcosβ = [cos (α β) cos (α-β)]/2; sinαcosβ = [sin (α β) sin ( α-β)]/2; cosαsinβ = [sin(α β)-sin(α-β)]/2
Sum difference product
sinθ sinφ = 2 sin[(θ φ)/2] cos[(θ-φ)/2] ;
sinθ-sinφ = 2 cos[(θ φ)/2] sin[(θ-φ)/2] ; cosθ cosφ = 2 cos[(θ φ)/2] cos[(θ-φ)/2 ] ; cosθ-cosφ = -2 sin[(θ φ)/2] sin[(θ-φ)/2] ; tanA tanB=sin(A B)/cosAcosB=tan(A B)(1-tanAtanB) ;tanA- tanB=sin(A-B)/cosAcosB=tan(A-B)(1 tanAtanB)
Half-width formula
tan(A/2)=(1-cosA)/sinA=sinA/(1 cosA); cot(A/2)=sinA/(1-cosA)=(1 cosA)/sinA. sin^2 (a/2)=(1-cos(a))/2 cos^2(a/2)=(1 cos(a))/2 tan(a/2)=(1-cos(a))/ sin(a)=sin(a)/(1 cos(a))
Trigonometric function conversion formula
1. Induction formula: sin(-α)
= -sinα;cos(-α) = cosα;sin(π/2-α)
= cosα; cos(π/2-α) =
sinα; sin(π/2 α) = cosα; cos(π/2 α)
= -sinα; sin(π-α) =
sinα;cos(π-α) = -cosα; sin(π α)
= -sinα; cos(π α) =
-cosα;tanA= sinA/cosA;tan(π/2 α)=-cotα;tan(π/2-α)=cotα;tan(π-α)=-tanα;tan(π α)= tanα
2. Formula for sum and difference of two angles:
sin(AB) = sinAcosBcosAsinB
cos(AB) = cosAcosBsinAsinB
tan(AB) = (tanAtanB)/(1tanAtanB)
cot(AB) = (cotAcotB1)/(cotBcotA) 3. Double angle formula sin2A=2sinA·cosA
cos2A=cosA2-sinA2=1-2sinA2=2cosA2-1
tan2A=2tanA/(1-tanA2)=2cotA/(cotA2-1)4. Half-angle formula tan(A/2)=(1-cosA)/sinA=sinA/(1 cosA);
cot(A/2)=sinA/(1-cosA)=(1 cosA)/sinA.
sin^2(a/2)=(1-cos(a))/2
cos^2(a/2)=(1 cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1 cos(a))
5. Sum and difference product sinθ sinφ
= 2 sin[(θ φ)/2] cos[(θ-φ)/2]
sinθ-sinφ = 2 cos[(θ φ)/2]
sin[(θ-φ)/2]
cosθ cosφ = 2 cos[(θ φ)/2]
cos[(θ-φ)/2]
cosθ-cosφ = -2 sin[(θφ)/2]
sin[(θ-φ)/2]
tanA tanB=sin(A B)/cosAcosB=tan(A B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1 tanAtanB)
6. Product sum and difference sinαsinβ
= -1/2*[cos(α-β)-cos(α β)]
cosαcosβ =
1/2*[cos(α β) cos(α-β)]
sinαcosβ =
1/2*[sin(α β) sin(α-β)]
cosαsinβ = 1/2*[sin(α β)-sin(α-β)]Universal formula
The above is the detailed content of Mutual conversion relationship of trigonometric functions. For more information, please follow other related articles on the PHP Chinese website!