


There are generally two ways of drawing, namely filling and stroking. The previous article has already talked about the stroke method. This article will talk about the method of filling graphics in Canvas.
Filling is fill(), very straightforward, right? And just like strokeStyle represents the stroke style, fillStyle represents the fill style.
ctx.fillStyle = 'Color'; The default fill style is opaque black
Question: Can unclosed paths be filled?
Yes. The Canvas will connect directly from the end point of your current path to the start point and then fill it. As shown in the picture:
But you can find that the last paragraph is not stroked.
Remember that in our previous article we drew a square with 4 lines, but canvas is not so bad, and it doesn’t even have a function to draw a rectangle directly. You can use fillRect() to directly fill a rectangle:
ctx.fillRect(x,y,width,height);
The x and y here refer to the coordinates of the starting point of the upper left corner of the rectangle, remember.
When it comes to fillRect, we have to mention strokeRect. You guessed it, it means to directly stroke a rectangle.
There are also fillText and strokeText. As for their functions, you may have guessed them. I won’t go into them here. Let’s preview them first.
Canvas fill gradient color
In Canvas, gradient color is also divided into two types, namely linear gradient and radial gradient, and the methods of creating them are also independent. Let's first look at how to create a linear gradient.
Create Linear Gradient = createLinearGradient - See, still a very straightforward word. His syntax is as follows:
createLinearGradient(x1,y1,x2,y2) has 4 parameters! It seems so complicated, but in fact this is quite simple, because as we have said before, a point in the flat world is determined by the x coordinate and y coordinate. Therefore, x1 and y1 represent the starting point coordinates of the linear gradient, and x2 and y2 represent the end point coordinates.
The advantage of this is obvious. It is very convenient if we want to create a diagonal linear gradient. But let's try creating a horizontal linear gradient first.
var linear = ctx.createLinearGradient(100,100,200,100); The gradient seems to be created, so can we fill it? ————This gradient is empty and has no color.
The way to add color to the gradient bar is addColorStop (position, color). But please note that this addColorStop is not added to the brush, but to the previous variable that holds the gradient. Here I am linear.
var linear = ctx.createLinearGradient(100,100,200,100);
linear.addColorStop(0,'#fff');
linear.addColorStop(0.5,'#f0f');
linear.addColorStop(1,'#333');
I used 3 addColorStops here, which means adding 3 colors to the gradient bar.
Note: The position parameter of addColorStop is always a number between 0-1, which can be two decimal places, indicating a percentage. He cannot receive parameters like '3px'.
At this time, we can fill the gradient color, but we must first assign the defined gradient to fillStyle.
var linear = ctx.createLinearGradient(100,100,200,100);
linear.addColorStop(0,'#fff');
linear.addColorStop( 0.5,'#f0f');
linear.addColorStop(1,'#333');
ctx.fillStyle = linear; //Assign the gradient to the fill style
ctx.fillRect(100,100,100,100);
ctx.stroke();
Note that fillRect and strokeRect draw independent paths. As shown in the above code, calling stroke after fillRect will not stroke the rectangle just drawn. The same is true for strokeRect.
After testing, I discovered a very annoying problem, that is, the coordinates of the linear gradient are relative to the entire Canvas range. For example, here, the starting point of my linear gradient is 100,100. If I draw a rectangle at 0,0 and fill it with this gradient, I will find that there is no filling - because the range of my gradient simply exceeds the rectangle. scope.
This is really a cheating setting.
Question: Will the color be filled before the starting point of the gradient and after the ending point of the gradient?
Yes. The color before the starting point is the starting color, and the color after the end point is always the end color.
How to terminate the end color, you can fill in a transparent end color after the end color. For example:
linear.addColorStop(0.99,' #333');
linear.addColorStop(1,'rgba(51,51,51,0)');
According to the previous plan, I will build a tilted linear gradient to try try. Just change the parameters of createLinearGradient.
var linear = ctx.createLinearGradient(100,100,200,200);
The effect is as follows:
createRadialGradient(x1,y1,r1,x2,y2,r2) where x1,y1,x2,y2 are still the same Represents the starting point and end point, but the starting point and end point here are both a circle, and x, y are the coordinates of the center of the circle. Therefore, r1 and r2 are the radius of the starting circle and the radius of the end circle respectively. As shown in the picture:
In my impression, it seems that the radial gradient is a circle, the center of the circle is the starting point, and the radius of the circle is the end point. But the radial gradient in the canvas is actually different. The starting point is a circle and the end point is a circle, which is different from my understanding.
We start from the simplest. First, make a very regular radial gradient, that is, the center of the gradient circle is the starting point of the gradient. Because of the regular radial gradient, the center is the center of the circle, so we should try to avoid deflection. So, let’s make the center of the end circle coincide with the center of the starting circle, right?
var radial = ctx.createRadialGradient(55, 55,10,55,55,55); //Coincident circle center coordinates
radial.addColorStop(0,'#fff');
radial.addColorStop(0.5,'#ff0');
radial.addColorStop(0.9,'#555');
radial.addColorStop(1,'#f00');
Here I set the center coordinates of the radial gradient start circle and the end circle to be the same, and the radius of the start circle is 10, and the radius of the end circle is 55. The final radial gradient range drawn is a circle with a width and height of 110, Note that the gradient range is based on the range of the end point circle.
(You can see that there is still a color outside the range of the end circle. This color is the end color. However, if you try to use radial.addColorStop(1.5,'#0f0′); to define a color outside the gradient range, You will still get an error).
So, what is the use of the radius of the starting circle? ——The center of the normal radial gradient (let’s call it “change center”...) is just a point and should not be a circle. In fact, we are right. This starting point circle is equivalent to a dot, but it may be larger.
Let us make the radius of the starting circle very large, close to the radius of the end circle:
var radial = ctx.createRadialGradient(55,55,50,55,55,55); //very close
Other colorStops remain unchanged, and then the graphic becomes like this.
In other words, the starting color of the radial gradient in the canvas is drawn from outside the range of the starting circle, and the entire color of the starting circle is the starting color.
We set the radius of the starting circle to 0, and the "change center" of the radial gradient is really a point.
Most of the time we don’t need a very formal radial gradient. Instead, we want its center of change to be offset, similar to the picture below:
var radial = ctx.createRadialGradient(75,75, 0,55,55,55); but the gradient range at this time is still the range of the end point circle.
Many people are born with a destructive mentality. For example, here, the radius of the end circle is always larger than the starting circle, but what would happen if they were reversed?
var radial = ctx.createRadialGradient(75, 75,55,55,55,0);
After testing, this will not report an error, but the original gradient from inside to outside has been changed into a gradient from outside to inside. This is a good use.
There is another problem. If we offset the center of the starting circle and the range of the starting circle exceeds the range of the ending circle,
What will happen at this time?
Ah! ? What is going on? !
This happens when the starting point circle and the ending point circle only partially overlap. So, if you want a normal radial gradient, make sure one circle completely wraps the other.
In addition, since the gradient can be assigned to fillStyle, it can also be assigned to strokeStyle. You know the effect.

Vue和Canvas:如何实现手写签名和手势识别功能引言:手写签名和手势识别功能在现代应用程序中越来越常见,它们可以为用户提供更加直观和自然的交互方式。Vue.js作为一款流行的前端框架,搭配Canvas元素可以实现这两个功能。本文将介绍如何使用Vue.js和Canvas元素来实现手写签名和手势识别功能,并给出相应的代码示例。一、手写签名功能实现要实现手写签

canvas的优势有强大的绘图功能、高性能、跨平台兼容性、支持多种图形格式、可以与其他Web技术集成、可以实现动态效果和可以实现复杂的图像处理。详细介绍:1、Canvas提供了丰富的绘图功能,可以绘制各种形状、线条、文本、图像等;2、Canvas在浏览器中直接操作像素,因此具有很高的性能;3、Canvas是基于HTML5标准的一部分,可以在各种现代浏览器上运行等等。

canvas特效有粒子效果、线条动画、图片处理、文字动画、音频可视化、3D效果、游戏开发等。详细介绍:1、粒子效果,通过控制粒子的位置、速度和颜色等属性来实现各种效果,如烟花、雨滴、星空等;2、线条动画,通过在画布上绘制连续的线条,创建出各种动态的线条效果;3、图片处理,通过对图片进行处理,可以实现各种炫酷的效果,如图片切换、图片特效等;4、文字动画等等特性。

如何利用Vue和Canvas创建逼真的天气动态背景引言:在现代网页设计中,动态背景效果是吸引用户眼球的重要元素之一。本文将介绍如何利用Vue和Canvas技术来创建一个逼真的天气动态背景效果。通过代码示例,你将学习如何编写Vue组件和利用Canvas绘制不同天气场景,从而实现一个独特而吸引人的背景效果。步骤一:创建Vue项目首先,我们需要创建一个Vue项目。

canvas插件有Fabric.js、EaselJS、Konva.js、Three.js、Paper.js、Chart.js和Phaser。详细介绍:1、Fabric.js 是一个基于Canvas的开源 JavaScript 库,它提供了一些强大的功能;2、EaselJS是CreateJS库中的一个模块,它提供了一套简化了Canvas编程的API;3、Konva.js等等。

canvas引擎有Three.js、Pixi.js、EaselJS、Konva.js、Paper.js等。详细介绍:1、Pixi.js,提供了简单易用的API,支持精灵、纹理、滤镜等功能,同时还提供了丰富的工具和插件,方便开发者进行交互、动画和优化等操作;2、Pixi.js,提供了简单易用的API,支持精灵、纹理、滤镜等功能,还提供了丰富的工具和插件;3、EaselJS等等。

Vue和Canvas:如何实现图片的马赛克效果引言:随着Web技术的不断发展,越来越多的人开始使用Vue框架来构建交互式的前端应用。而在前端开发中,常常需要为用户提供图片处理的功能。本文将介绍如何利用Vue和Canvas实现图片的马赛克效果,为用户带来更好的视觉体验。一、马赛克效果概述马赛克效果是一种将图像的细节部分进行像素化处理,使得整个图像变得模糊和抽象

Vue和Canvas:如何实现视频播放器的定制化界面引言:在现代互联网时代,视频已经成为人们生活中必不可少的一部分。为了提供良好的用户体验,许多网站和应用程序都提供了自定义的视频播放器界面。本文将介绍如何使用Vue和Canvas技术实现一个定制化的视频播放器界面。一、前期准备在开始之前,您需要确保您已经安装了Vue和Canvas,并且熟悉这两种技术的基本用法


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

Notepad++7.3.1
Easy-to-use and free code editor

Atom editor mac version download
The most popular open source editor

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.
