search
HomeTechnology peripheralsAIDeeply understand the core functions of Pytorch: automatic derivation!

Hi, I’m Xiaozhuang!

About the automatic derivation operation in pytorch, introduce the concept of automatic derivation in pytorch.

Automatic derivation is an important function of the deep learning framework, used to calculate gradients, implement parameter updates and optimization.

PyTorch is a commonly used deep learning framework that uses dynamic calculation graphs and automatic derivation mechanisms to simplify the gradient calculation process.

突破 Pytorch 核心点,自动求导 !!

Automatic derivation

Automatic derivation is an important function of the machine learning framework. It can automatically calculate the derivative (gradient) of a function, thereby simplifying The process of training a deep learning model. In deep learning, models often contain a large number of parameters, and manually calculating gradients can become complex and error-prone. PyTorch provides an automatic derivation function, allowing users to easily calculate gradients and perform backpropagation to update model parameters. The introduction of this feature greatly improves the efficiency and ease of use of deep learning.

Some principles

PyTorch’s automatic derivation function is based on dynamic calculation graphs. A computation graph is a graph structure used to represent the function calculation process, in which nodes represent operations and edges represent data flow. Different from static calculation graphs, the structure of dynamic calculation graphs can be dynamically generated based on the actual execution process, rather than being defined in advance. This design makes PyTorch flexible and scalable to adapt to different computing needs. Through dynamic calculation graphs, PyTorch can record the history of operations, perform backpropagation and calculate gradients as needed. This makes PyTorch one of the widely used frameworks in the field of deep learning.

In PyTorch, every operation of the user is recorded to build the calculation graph. In this way, when the gradient needs to be calculated, PyTorch can perform backpropagation according to the calculation graph and automatically calculate the gradient of each parameter to the loss function. This automatic derivation mechanism based on dynamic calculation graphs makes PyTorch flexible and scalable, making it suitable for various complex neural network structures.

Basic operations for automatic derivation

1. Tensor(Tensor)

In PyTorch, tensor is the basic data structure for automatic derivation. Tensors are similar to multidimensional arrays in NumPy, but have additional features such as automatic derivation. Through the torch.Tensor class, users can create tensors and perform various operations on them.

import torch# 创建张量x = torch.tensor([2.0], requires_grad=True)

In the above example, requires_grad=True means that we want to automatically differentiate this tensor.

2. Computational graph construction

Each operation performed will create a node in the computational graph. PyTorch provides various tensor operations, such as addition, multiplication, activation functions, etc., which will leave traces in the calculation graph.

# 张量操作y = x ** 2z = 2 * y + 3

In the above example, the calculation processes of y and z are recorded in the calculation graph.

3. Gradient calculation and backpropagation

Once the calculation graph is constructed, backpropagation can be performed by calling the .backward() method to automatically calculate the gradient.

# 反向传播z.backward()

At this time, the gradient of x can be obtained by accessing x.grad.

# 获取梯度print(x.grad)

4. Disable gradient tracking

Sometimes, we want to disable gradient tracking for certain operations, we can use the torch.no_grad() context manager.

with torch.no_grad():# 在这个区域内的操作不会被记录在计算图中w = x + 1

5. Clear the gradient

In the training loop, it is usually necessary to clear the gradient before each backpropagation to avoid gradient accumulation.

# 清零梯度x.grad.zero_()

A complete case: automatic derivation of linear regression

In order to demonstrate the process of automatic derivation more specifically, let us consider a simple linear regression problem. We define a linear model and a mean square error loss function and use automatic derivation to optimize the model parameters.

import torch# 数据准备X = torch.tensor([[1.0], [2.0], [3.0]])y = torch.tensor([[2.0], [4.0], [6.0]])# 模型参数w = torch.tensor([[0.0]], requires_grad=True)b = torch.tensor([[0.0]], requires_grad=True)# 模型和损失函数def linear_model(X, w, b):return X @ w + bdef mean_squared_error(y_pred, y_true):return ((y_pred - y_true) ** 2).mean()# 训练循环learning_rate = 0.01epochs = 100for epoch in range(epochs):# 前向传播y_pred = linear_model(X, w, b)loss = mean_squared_error(y_pred, y)# 反向传播loss.backward()# 更新参数with torch.no_grad():w -= learning_rate * w.gradb -= learning_rate * b.grad# 清零梯度w.grad.zero_()b.grad.zero_()# 打印最终参数print("训练后的参数:")print("权重 w:", w)print("偏置 b:", b)

In this example, we define a simple linear model and mean square error loss function. Through multiple iterative training loops, the parameters w and b of the model will be optimized to minimize the loss function.

Finally

The automatic derivation in PyTorch provides powerful support for deep learning, making model training simpler and more efficient.

Through dynamic calculation graphs and gradient calculations, users can easily define complex neural network structures and implement optimization algorithms such as gradient descent through automatic derivation.

This allows deep learning researchers and engineers to focus more on model design and experiments without having to worry about the details of gradient calculations.

The above is the detailed content of Deeply understand the core functions of Pytorch: automatic derivation!. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
科大讯飞:华为昇腾 910B 能力基本可对标英伟达 A100,正合力打造我国通用人工智能新底座科大讯飞:华为昇腾 910B 能力基本可对标英伟达 A100,正合力打造我国通用人工智能新底座Oct 22, 2023 pm 06:13 PM

本站10月22日消息,今年第三季度,科大讯飞实现净利润2579万元,同比下降81.86%;前三季度净利润9936万元,同比下降76.36%。科大讯飞副总裁江涛在Q3业绩说明会上透露,讯飞已于2023年初与华为昇腾启动专项攻关,与华为联合研发高性能算子库,合力打造我国通用人工智能新底座,让国产大模型架构在自主创新的软硬件基础之上。他指出,目前华为昇腾910B能力已经基本做到可对标英伟达A100。在即将举行的科大讯飞1024全球开发者节上,讯飞和华为在人工智能算力底座上将有进一步联合发布。他还提到,

自然语言生成任务中的五种采样方法介绍和Pytorch代码实现自然语言生成任务中的五种采样方法介绍和Pytorch代码实现Feb 20, 2024 am 08:50 AM

在自然语言生成任务中,采样方法是从生成模型中获得文本输出的一种技术。这篇文章将讨论5种常用方法,并使用PyTorch进行实现。1、GreedyDecoding在贪婪解码中,生成模型根据输入序列逐个时间步地预测输出序列的单词。在每个时间步,模型会计算每个单词的条件概率分布,然后选择具有最高条件概率的单词作为当前时间步的输出。这个单词成为下一个时间步的输入,生成过程会持续直到满足某种终止条件,比如生成了指定长度的序列或者生成了特殊的结束标记。GreedyDecoding的特点是每次选择当前条件概率最

PyCharm与PyTorch完美结合:安装配置步骤详解PyCharm与PyTorch完美结合:安装配置步骤详解Feb 21, 2024 pm 12:00 PM

PyCharm是一款强大的集成开发环境(IDE),而PyTorch是深度学习领域备受欢迎的开源框架。在机器学习和深度学习领域,使用PyCharm和PyTorch进行开发可以极大地提高开发效率和代码质量。本文将详细介绍如何在PyCharm中安装配置PyTorch,并附上具体的代码示例,帮助读者更好地利用这两者的强大功能。第一步:安装PyCharm和Python

用PyTorch实现噪声去除扩散模型用PyTorch实现噪声去除扩散模型Jan 14, 2024 pm 10:33 PM

在详细了解去噪扩散概率模型(DDPM)的工作原理之前,我们先来了解一下生成式人工智能的一些发展情况,这也是DDPM的基础研究之一。VAEVAE使用编码器、概率潜在空间和解码器。在训练过程中,编码器预测每个图像的均值和方差,并从高斯分布中对这些值进行采样。采样的结果传递到解码器中,解码器将输入图像转换为与输出图像相似的形式。KL散度用于计算损失。VAE的一个显著优势是其能够生成多样化的图像。在采样阶段,可以直接从高斯分布中采样,并通过解码器生成新的图像。GAN在变分自编码器(VAEs)的短短一年之

安装PyTorch的PyCharm教程安装PyTorch的PyCharm教程Feb 24, 2024 am 10:09 AM

PyTorch作为一款功能强大的深度学习框架,被广泛应用于各类机器学习项目中。PyCharm作为一款强大的Python集成开发环境,在实现深度学习任务时也能提供很好的支持。本文将详细介绍如何在PyCharm中安装PyTorch,并提供具体的代码示例,帮助读者快速上手使用PyTorch进行深度学习任务。第一步:安装PyCharm首先,我们需要确保已经在计算机上

使用PHP和PyTorch进行深度学习使用PHP和PyTorch进行深度学习Jun 19, 2023 pm 02:43 PM

深度学习是人工智能领域的一个重要分支,近年来受到了越来越多人的关注和重视。为了能够进行深度学习的研究和应用,往往需要使用到一些深度学习框架来帮助实现。在本文中,我们将介绍如何使用PHP和PyTorch进行深度学习。一、什么是PyTorchPyTorch是一个由Facebook开发的开源机器学习框架,它可以帮助我们快速地创建深度学习模型并进行训练。PyTorc

真快!几分钟就把视频语音识别为文本了,不到10行代码真快!几分钟就把视频语音识别为文本了,不到10行代码Feb 27, 2024 pm 01:55 PM

大家好,我是风筝两年前,将音视频文件转换为文字内容的需求难以实现,但是如今只需几分钟便可轻松解决。据说一些公司为了获取训练数据,已经对抖音、快手等短视频平台上的视频进行了全面爬取,然后将视频中的音频提取出来转换成文本形式,用作大数据模型的训练语料。如果您需要将视频或音频文件转换为文字,可以尝试今天提供的这个开源解决方案。例如,可以搜索影视节目的对话出现的具体时间点。话不多说,进入正题。Whisper这个方案就是OpenAI开源的Whisper,当然是用Python写的了,只需要简单安装几个包,然

pycharm怎么安装pytorchpycharm怎么安装pytorchDec 08, 2023 pm 03:05 PM

安装步骤:1、打开PyCharm并创建一个新的Python项目;2、在PyCharm的底部状态栏中,点击“Terminal”图标,打开终端窗口;3、在终端窗口中,使用pip命令安装PyTorch,根据系统和需求,可以选择不同的安装方式;4、安装完成后,即可在PyCharm中编写代码并导入PyTorch库来使用它。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools