Home > Article > Backend Development > Data processing techniques to delete specified columns in DataFrame using Pandas
Data processing skills: Use Pandas to delete specific columns in the DataFrame
In the process of data analysis and processing, deleting unnecessary columns in the DataFrame is one of the common requirements. one. Pandas is a commonly used data analysis and processing library in Python, providing rich functions and flexible operation methods. This article will introduce how to use Pandas to delete specific columns in a DataFrame and provide specific code examples.
1. First, we need to import the Pandas library and create a DataFrame for demonstration:
import pandas as pd # 创建示例DataFrame data = {'姓名': ['张三', '李四', '王五', '赵六'], '性别': ['男', '女', '男', '女'], '年龄': [25, 30, 35, 28], '成绩': [80, 90, 85, 95]} df = pd.DataFrame(data) print(df)
In the above code, we created a DataFrame containing four columns: name, gender, age and grades. DataFrame, and print it out, the results are as follows:
姓名 性别 年龄 成绩 0 张三 男 25 80 1 李四 女 30 90 2 王五 男 35 85 3 赵六 女 28 95
2. Next, we will demonstrate how to use Pandas to delete specific columns in the DataFrame.
drop
method to delete a single column # 删除单个列 df_drop = df.drop('性别', axis=1) print(df_drop)
In the above code, we use the drop
method to delete a single column in the DataFrame 'Gender' column and save the results in a new DataFrame df_drop
. axis=1
means that the column is deleted, the result is as follows:
姓名 年龄 成绩 0 张三 25 80 1 李四 30 90 2 王五 35 85 3 赵六 28 95
# 删除多个列 df_drop_multi = df.drop(['年龄', '成绩'], axis=1) print(df_drop_multi)
In the above code, we use The drop
method deletes the 'age' and 'grade' columns in the DataFrame and saves the results in a new DataFrame df_drop_multi
. The results are as follows:
姓名 性别 0 张三 男 1 李四 女 2 王五 男 3 赵六 女
# 直接使用列表索引删除多个列 df_drop_iat = df[df.columns[[0, 2]]] print(df_drop_iat)
In the above code, we use the DataFrame's columns
attribute and list index to delete the 'name' in the DataFrame and 'age' columns, and save the result in a new DataFrame df_drop_iat
, the result is as follows:
姓名 年龄 0 张三 25 1 李四 30 2 王五 35 3 赵六 28
3. Through the above example, we learned how to delete the DataFrame in using Pandas Different methods and techniques for specific columns. The choice of these methods depends on practical needs as well as personal preference.
Summary:
drop
method to delete single or multiple columns. You need to specify axis=1
to indicate that the columns are being deleted. df.columns
property. Through the flexible operations and rich functions provided by Pandas, we can easily process and manage the data in DataFrame to meet different data analysis and processing needs.
The above is the detailed content of Data processing techniques to delete specified columns in DataFrame using Pandas. For more information, please follow other related articles on the PHP Chinese website!