


The AI model that uses text to synthesize 3D graphics has a new SOTA!
Recently, the research group of Professor Liu Yongjin of Tsinghua University proposed a new method of creating 3D images based on the diffusion model.
Both the consistency between different perspectives and the matching with prompt words have been greatly improved compared to before.
Picture
Vincent 3D is a hot research content of 3D AIGC and has received widespread attention from academia and industry.
The new model proposed by Professor Liu Yongjin’s research team is called TICD (Text-Image Conditioned Diffusion), which has reached the SOTA level on the T3Bench data set.
Relevant papers have been released and the code will be open source soon.
The evaluation results have reached SOTA
In order to evaluate the effect of the TICD method, the research team first conducted qualitative experiments and compared some previous better methods.
The results show that the 3D graphics generated by the TICD method have better quality, clearer graphics, and a higher degree of matching with the prompt words.
Picture
To further evaluate the performance of these models, the team quantitatively tested TICD with these methods on the T3Bench dataset.
The results show that TICD achieved the best results in the three prompt sets of single object, single object with background, and multiple objects, proving that it has overall advantages in both generation quality and text alignment. .
Picture
In addition, in order to further evaluate the text alignment of these models, the research team also performed CLIP of the pictures rendered by the 3D object and the original prompt words Cosine similarity was tested, and the result was that TICD still performed best.
So, how does the TICD method achieve such an effect?
Incorporating multi-view consistency prior into NeRF supervision
Currently mainstream 3D text generation methods mostly use pre-trained 2D diffusion models and are optimized through Score Distillation Sampling (SDS) Neural Radiation Field (NeRF) to generate brand new 3D models.
However, the supervision provided by this pre-trained diffusion model is limited to the input text itself, and does not constrain the consistency between multiple views, and may cause problems such as poor generated geometric structures.
To introduce multi-view consistency in the prior of the diffusion model, some recent studies have fine-tuned 2D diffusion models by using multi-view data, but still lack fine-grained inter-view continuity.
To solve this challenge, the TICD method incorporates text-conditioned and image-conditioned multi-view images into the NeRF-optimized supervision signal, ensuring the alignment of 3D information with prompt words and 3D objects respectively. The strong consistency between viewing angles effectively improves the quality of generated 3D models.
Picture
In terms of workflow, TICD first samples several sets of orthogonal reference camera perspectives, uses NeRF to render the corresponding reference views, and then renders these The reference view uses a text-based conditional diffusion model to constrain the overall consistency of content and text.
On this basis, select several sets of reference camera perspectives, and render a view from an additional new perspective for each perspective. Then, the pose relationship between the two views and perspectives is used as a new condition, and an image-based conditional diffusion model is used to constrain the consistency of details between different perspectives.
Combining the supervision signals of the two diffusion models, TICD can update the parameters of the NeRF network and optimize iteratively until the final NeRF model is obtained and renders high-quality, geometrically clear and text-consistent 3D content.
In addition, the TICD method can effectively eliminate problems such as the disappearance of geometric information, excessive generation of incorrect geometric information, and color confusion that may occur when existing methods face specific text input.
Paper address: https://www.php.cn/link/8553adf92deaf5279bcc6f9813c8fdcc
The above is the detailed content of Combining the diffusion model with NeRF, Tsinghua Wensheng proposed a new 3D method to achieve SOTA. For more information, please follow other related articles on the PHP Chinese website!

1 前言在发布DALL·E的15个月后,OpenAI在今年春天带了续作DALL·E 2,以其更加惊艳的效果和丰富的可玩性迅速占领了各大AI社区的头条。近年来,随着生成对抗网络(GAN)、变分自编码器(VAE)、扩散模型(Diffusion models)的出现,深度学习已向世人展现其强大的图像生成能力;加上GPT-3、BERT等NLP模型的成功,人类正逐步打破文本和图像的信息界限。在DALL·E 2中,只需输入简单的文本(prompt),它就可以生成多张1024*1024的高清图像。这些图像甚至

Wav2vec 2.0 [1],HuBERT [2] 和 WavLM [3] 等语音预训练模型,通过在多达上万小时的无标注语音数据(如 Libri-light )上的自监督学习,显著提升了自动语音识别(Automatic Speech Recognition, ASR),语音合成(Text-to-speech, TTS)和语音转换(Voice Conversation,VC)等语音下游任务的性能。然而这些模型都没有公开的中文版本,不便于应用在中文语音研究场景。 WenetSpeech [4] 是

“Making large models smaller”这是很多语言模型研究人员的学术追求,针对大模型昂贵的环境和训练成本,陈丹琦在智源大会青源学术年会上做了题为“Making large models smaller”的特邀报告。报告中重点提及了基于记忆增强的TRIME算法和基于粗细粒度联合剪枝和逐层蒸馏的CofiPruning算法。前者能够在不改变模型结构的基础上兼顾语言模型困惑度和检索速度方面的优势;而后者可以在保证下游任务准确度的同时实现更快的处理速度,具有更小的模型结构。陈丹琦 普

由于复杂的注意力机制和模型设计,大多数现有的视觉 Transformer(ViT)在现实的工业部署场景中不能像卷积神经网络(CNN)那样高效地执行。这就带来了一个问题:视觉神经网络能否像 CNN 一样快速推断并像 ViT 一样强大?近期一些工作试图设计 CNN-Transformer 混合架构来解决这个问题,但这些工作的整体性能远不能令人满意。基于此,来自字节跳动的研究者提出了一种能在现实工业场景中有效部署的下一代视觉 Transformer——Next-ViT。从延迟 / 准确性权衡的角度看,

3月27号,Stability AI的创始人兼首席执行官Emad Mostaque在一条推文中宣布,Stable Diffusion XL 现已可用于公开测试。以下是一些事项:“XL”不是这个新的AI模型的官方名称。一旦发布稳定性AI公司的官方公告,名称将会更改。与先前版本相比,图像质量有所提高与先前版本相比,图像生成速度大大加快。示例图像让我们看看新旧AI模型在结果上的差异。Prompt: Luxury sports car with aerodynamic curves, shot in a

人工智能就是一个「拼财力」的行业,如果没有高性能计算设备,别说开发基础模型,就连微调模型都做不到。但如果只靠拼硬件,单靠当前计算性能的发展速度,迟早有一天无法满足日益膨胀的需求,所以还需要配套的软件来协调统筹计算能力,这时候就需要用到「智能计算」技术。最近,来自之江实验室、中国工程院、国防科技大学、浙江大学等多达十二个国内外研究机构共同发表了一篇论文,首次对智能计算领域进行了全面的调研,涵盖了理论基础、智能与计算的技术融合、重要应用、挑战和未来前景。论文链接:https://spj.scien

译者 | 李睿审校 | 孙淑娟近年来, Transformer 机器学习模型已经成为深度学习和深度神经网络技术进步的主要亮点之一。它主要用于自然语言处理中的高级应用。谷歌正在使用它来增强其搜索引擎结果。OpenAI 使用 Transformer 创建了著名的 GPT-2和 GPT-3模型。自从2017年首次亮相以来,Transformer 架构不断发展并扩展到多种不同的变体,从语言任务扩展到其他领域。它们已被用于时间序列预测。它们是 DeepMind 的蛋白质结构预测模型 AlphaFold

说起2010年南非世界杯的最大网红,一定非「章鱼保罗」莫属!这只位于德国海洋生物中心的神奇章鱼,不仅成功预测了德国队全部七场比赛的结果,还顺利地选出了最终的总冠军西班牙队。不幸的是,保罗已经永远地离开了我们,但它的「遗产」却在人们预测足球比赛结果的尝试中持续存在。在艾伦图灵研究所(The Alan Turing Institute),随着2022年卡塔尔世界杯的持续进行,三位研究员Nick Barlow、Jack Roberts和Ryan Chan决定用一种AI算法预测今年的冠军归属。预测模型图


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

Atom editor mac version download
The most popular open source editor

WebStorm Mac version
Useful JavaScript development tools

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

Notepad++7.3.1
Easy-to-use and free code editor
