search
HomeTechnology peripheralsAITRIBE achieves domain adaptation robustness and reaches SOTA's AAAII 2024 in multiple real-life scenarios.

The purpose of Test-Time Adaptation is to adapt the source domain model to the test data in the inference phase, and has achieved excellent results in adapting to unknown image damage fields. However, many current methods lack consideration of the test data flow in real-world scenarios, for example:

  • The test data flow should be time-varying distribution ( Rather than a fixed distribution in traditional domain adaptation)
  • The test data stream may have local class correlations (rather than completely independent and identically distributed sampling)
  • The test data stream still shows global category imbalance for a long time

Recently, South China University of Technology, A* The STAR and CUHK-Shenzhen teams have proven through a large number of experiments that test data flows in these real scenarios will bring huge challenges to existing methods. The team believes that the failure of state-of-the-art methods is first caused by indiscriminately adjusting the normalization layer based on imbalanced test data.

To this end, the research teamproposed an innovative Balanced BatchNorm Layer(Balanced BatchNorm Layer) to replace the conventional inference phase Batch normalization layer. At the same time, they found that relying solely on self-training (ST) to learn in unknown test data streams can easily lead to over-adaptation (pseudo-label category imbalance, target domain is not a fixed domain), resulting in poor performance in a changing domain. .

Therefore, the team recommends regularizing model updates through anchored loss (Anchored Loss), thereby improving self-reliance under continuous domain transfer Training helps to significantly improve the robustness of the model. In the end, the model TRIBE stably achieved state-of-the-art performance under four data sets and multiple real-world test data stream settings, and significantly surpassed existing advanced methods. Research paper has been accepted by AAAI 2024.

AAAI 2024 | 测试时领域适应的鲁棒性得以保证,TRIBE在多真实场景下达到SOTA

Paper link: https://arxiv.org/abs/2309.14949
Code link: https://github.com/Gorilla-Lab- SCUT/TRIBE

Introduction

The success of deep neural networks relies on generalizing the trained model to i.i.d. assumptions in the test domain . However, in practical applications, the robustness of out-of-distribution test data, such as visual damage caused by different lighting conditions or severe weather, is a concern. Recent research shows that this data loss can seriously affect the performance of pre-trained models. Importantly, the corruption (distribution) of test data is often unknown and sometimes unpredictable before deployment.

Therefore, adjusting the pre-trained model to adapt to the test data distribution in the inference phase is a worthy new topic, namely test-time domain adaptation (TTA). Previously, TTA was mainly implemented through distribution alignment (TTAC, TTT), self-supervised training (AdaContrast) and self-training (Conjugate PL), which have brought significant and robust improvements in a variety of visual damage test data.

Existing test-time domain adaptation (TTA) methods are usually based on some strict test data assumptions, such as stable class distribution, samples obey independent and identically distributed sampling, and fixed domain offset. These assumptions have inspired many researchers to explore real-world test data flows, such as CoTTA, NOTE, SAR, and RoTTA.

Recently, research on real-world TTA, such as SAR (ICLR 2023) and RoTTA (CVPR 2023), has mainly focused on the challenges posed by local class imbalance and continuous domain shift to TTA. Local class imbalance usually results from the fact that the test data is not sampled independently and identically distributedly. Direct indiscriminate domain adaptation will lead to biased distribution estimates.

Recent research has proposed exponentially updated batch normalized statistics (RoTTA) or instance-level discriminative updated batch normalized statistics (NOTE) to solve this challenge. The research goal is to transcend the challenge of local class imbalance, considering that the overall distribution of test data may be severely imbalanced and the distribution of classes may also change over time. A diagram of a more challenging scenario can be seen in Figure 1 below.

AAAI 2024 | 测试时领域适应的鲁棒性得以保证,TRIBE在多真实场景下达到SOTA

Since the class prevalence in the test data is unknown before the inference stage, and the model may be biased towards the majority class through blind test time adjustments, this renders existing TTA methods ineffective. Based on empirical observations, this problem becomes particularly prominent for methods that rely on the current batch of data to estimate global statistics for updating the normalization layer (BN, PL, TENT, CoTTA, etc.).

This is mainly due to:
1. The current batch of data will be affected by local category imbalance, resulting in a biased overall distribution estimate;
2. Estimate a single global distribution from the entire test data with global class imbalance. The global distribution can easily be biased towards the majority class, causing internal covariate shifts.

In order to avoid biased batch normalization (BN), the team proposed a balanced batch normalization layer (Balanced Batch Normalization Layer), which is The distribution of each individual class is modeled and the global distribution is extracted from the class distribution. The balanced batch normalization layer allows obtaining class-balanced estimates of distributions under locally and globally class-imbalanced test data streams.

Domain shifts occur frequently in real-world test data over time, such as gradual changes in lighting/weather conditions. This brings another challenge to existing TTA methods, the TTA model may become inconsistent when switching from domain A to domain B due to over-adaptation to domain A.

In order to alleviate over-adaptation to a certain short-term domain, CoTTA randomly restores parameters, and EATA uses fisher information to regularize the parameters. Nonetheless, these methods still do not explicitly address the emerging challenges in the field of test data.

This article introduces an anchor network (Anchor Network) to form a three-network self-training model (Tri-Net Self-Training) based on the two-branch self-training architecture. The anchor network is a frozen source model but allows tuning statistics rather than parameters in the batch normalization layer via test samples. And an anchoring loss is proposed to use the output of the anchor network to regularize the output of the teacher model to avoid the network from over-adapting to the local distribution.

The final model combines a three-net self-training model and a balanced batch normalization layer (TRI-net self-training with BalancEd normalization, TRIBE) to perform well in a wider range of adjustable learning rates. Consistently superior performance. It shows substantial performance improvements under four data sets and multiple real-world data streams, demonstrating the unique stability and robustness.

Method introduction

##The paper method is divided into three parts:
  • Introducing the TTA protocol in the real world;
  • Balanced batch normalization;
  • Three-network self-training model.

TTA protocol in the real world

The author uses a mathematical probability model to model the real-world test data flow with local class imbalance and global class imbalance, as well as the domain distribution that changes over time. As shown in Figure 2 below.

AAAI 2024 | 测试时领域适应的鲁棒性得以保证,TRIBE在多真实场景下达到SOTA

Balanced batch normalization

In order to correct the unbalanced test data for BN To estimate the bias generated by statistics, the author proposes a balanced batch normalization layer, which maintains a pair of statistics for each semantic class, expressed as:

AAAI 2024 | 测试时领域适应的鲁棒性得以保证,TRIBE在多真实场景下达到SOTA

To update category statistics, the author applies an efficient iterative update method with the help of pseudo-label prediction, as shown below:

AAAI 2024 | 测试时领域适应的鲁棒性得以保证,TRIBE在多真实场景下达到SOTA


Use pseudo-labels to separately count the sampling points of each category of data, and re-obtain the overall distribution statistics under category balance through the following formula, so as to align the source with category balance A good feature space for data learning. AAAI 2024 | 测试时领域适应的鲁棒性得以保证,TRIBE在多真实场景下达到SOTA
In some special cases, the author found that when the number of categories is largeAAAI 2024 | 测试时领域适应的鲁棒性得以保证,TRIBE在多真实场景下达到SOTA or the pseudo-label accuracy is low (accuracy

AAAI 2024 | 测试时领域适应的鲁棒性得以保证,TRIBE在多真实场景下达到SOTA

Through further analysis and observation, the author found that when γ=1 When γ = 0, the entire update strategy degenerates into the RobustBN update strategy in RoTTA. When γ = 0, it is a purely category-independent update strategy. Therefore, when γ takes a value of 0 to 1, it can be adapted to various situations.

Three network self-training model

The author is now Based on some student-teacher models, an anchoring network branch is added, and anchoring loss is introduced to constrain the prediction distribution of the teacher network. This design was inspired by TTAC. TTAC points out that relying solely on self-training on the test data stream will easily lead to the accumulation of confirmation bias. This problem is more serious on the real-world test data stream in this article. TTAC uses statistical information collected from the source domain to implement domain alignment regularization, but for the Fully TTA setting, this source domain information is not collectible.

At the same time, the author also gained another revelation. The success of unsupervised domain alignment is based on the assumption that the two domain distributions have a relatively high overlap rate. Therefore, the author only adjusted the frozen source domain model of the BN statistic to regularize the teacher model to prevent the teacher model's prediction distribution from deviating too far from the source model's prediction distribution (this destroyed the previous experience of high coincidence rate between the two distributions) observation). A large number of experiments prove that the discoveries and innovations in this article are correct and robust. The following is the expression of anchoring loss:

AAAI 2024 | 测试时领域适应的鲁棒性得以保证,TRIBE在多真实场景下达到SOTA

The following figure shows the frame diagram of the TRIBE network:

AAAI 2024 | 测试时领域适应的鲁棒性得以保证,TRIBE在多真实场景下达到SOTA

Experimental part

The author of the paper conducted TRIBE on 4 data sets based on two real-world TTA protocols. verified. Two real-world TTA protocols are GLI-TTA-F where the global class distribution is fixed and GLI-TTA-V where the global class distribution is not fixed.

AAAI 2024 | 测试时领域适应的鲁棒性得以保证,TRIBE在多真实场景下达到SOTA

The above table shows the performance of the two protocols in the CIFAR10-C data set under different imbalance coefficients. The following conclusions can be drawn:

1. Only LAME, TTAC, NOTE, RoTTA and the TRIBE proposed in the paper exceed the TEST baseline, indicating the necessity of a more robust TTA method under real test flows.

2. Global class imbalance has brought great challenges to existing TTA methods. For example, the previous SOTA method RoTTA showed an error rate of 25.20% when I.F.=1 But when I.F.=200, the error rate rises to 32.45%. In comparison, TRIBE can stably demonstrate relatively good performance.

3. The consistency of TRIBE has an absolute advantage, surpassing all previous methods, and surpassing the previous SOTA (under the setting of global class balance (I.F.=1) TTAC) about 7%, and achieved a performance improvement of about 13% under the more difficult global class imbalance (I.F.=200) setting.

4. From I.F.=10 to I.F.=200, other TTA methods show a trend of performance decline as the imbalance increases. TRIBE can maintain relatively stable performance. This is attributed to the introduction of a balanced batch normalization layer that better accounts for severe class imbalance and anchoring loss, which avoids over-adaptation across different domains.
For more data set results, please refer to the original paper.

In addition, Table 4 shows the detailed modular ablation, with the following observational conclusions:

AAAI 2024 | 测试时领域适应的鲁棒性得以保证,TRIBE在多真实场景下达到SOTA

1. Only replacing BN with the balanced batch normalization layer (Balanced BN), without updating any model parameters, and only updating the BN statistics through forward can bring about a performance improvement of 10.24% (44.62 -> 34.28), and It surpasses Robust BN's error rate of 41.97%.

2. Anchored Loss combined with Self-Training, whether under the previous BN structure or the latest Balanced BN structure, has improved performance and surpassed EMA Regularization effect of Model.
The rest of this article and the 9-page appendix finally present 17 detailed tabular results, demonstrating the stability, robustness and superiority of TRIBE from multiple dimensions. The appendix also contains a more detailed theoretical derivation and explanation of the balanced batch normalization layer.

Summary and Outlook

##In order to deal with the real world Facing many challenges such as non-i.i.d. test data flow, global class imbalance and continuous domain transfer, the research team deeply explored how to improve the robustness of domain adaptation algorithms at test time. In order to adapt to the unbalanced test data, the author proposed a Balanced Batchnorm Layer to achieve unbiased estimation of statistics, and then proposed a network that includes a student network, a teacher network and an anchor network. Three-layer network structure to standardize TTA based on self-training.

But this article still has shortcomings and room for improvement. Since a large number of experiments and starting points are based on classification tasks and BN modules, there is no need for adaptation to other tasks and Transformer-based models. The extent remains unknown. These issues deserve further research and exploration in follow-up work.

The above is the detailed content of TRIBE achieves domain adaptation robustness and reaches SOTA's AAAII 2024 in multiple real-life scenarios.. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:机器之心. If there is any infringement, please contact admin@php.cn delete
Can't use ChatGPT! Explaining the causes and solutions that can be tested immediately [Latest 2025]Can't use ChatGPT! Explaining the causes and solutions that can be tested immediately [Latest 2025]May 14, 2025 am 05:04 AM

ChatGPT is not accessible? This article provides a variety of practical solutions! Many users may encounter problems such as inaccessibility or slow response when using ChatGPT on a daily basis. This article will guide you to solve these problems step by step based on different situations. Causes of ChatGPT's inaccessibility and preliminary troubleshooting First, we need to determine whether the problem lies in the OpenAI server side, or the user's own network or device problems. Please follow the steps below to troubleshoot: Step 1: Check the official status of OpenAI Visit the OpenAI Status page (status.openai.com) to see if the ChatGPT service is running normally. If a red or yellow alarm is displayed, it means Open

Calculating The Risk Of ASI Starts With Human MindsCalculating The Risk Of ASI Starts With Human MindsMay 14, 2025 am 05:02 AM

On 10 May 2025, MIT physicist Max Tegmark told The Guardian that AI labs should emulate Oppenheimer’s Trinity-test calculus before releasing Artificial Super-Intelligence. “My assessment is that the 'Compton constant', the probability that a race to

An easy-to-understand explanation of how to write and compose lyrics and recommended tools in ChatGPTAn easy-to-understand explanation of how to write and compose lyrics and recommended tools in ChatGPTMay 14, 2025 am 05:01 AM

AI music creation technology is changing with each passing day. This article will use AI models such as ChatGPT as an example to explain in detail how to use AI to assist music creation, and explain it with actual cases. We will introduce how to create music through SunoAI, AI jukebox on Hugging Face, and Python's Music21 library. Through these technologies, everyone can easily create original music. However, it should be noted that the copyright issue of AI-generated content cannot be ignored, and you must be cautious when using it. Let’s explore the infinite possibilities of AI in the music field together! OpenAI's latest AI agent "OpenAI Deep Research" introduces: [ChatGPT]Ope

What is ChatGPT-4? A thorough explanation of what you can do, the pricing, and the differences from GPT-3.5!What is ChatGPT-4? A thorough explanation of what you can do, the pricing, and the differences from GPT-3.5!May 14, 2025 am 05:00 AM

The emergence of ChatGPT-4 has greatly expanded the possibility of AI applications. Compared with GPT-3.5, ChatGPT-4 has significantly improved. It has powerful context comprehension capabilities and can also recognize and generate images. It is a universal AI assistant. It has shown great potential in many fields such as improving business efficiency and assisting creation. However, at the same time, we must also pay attention to the precautions in its use. This article will explain the characteristics of ChatGPT-4 in detail and introduce effective usage methods for different scenarios. The article contains skills to make full use of the latest AI technologies, please refer to it. OpenAI's latest AI agent, please click the link below for details of "OpenAI Deep Research"

Explaining how to use the ChatGPT app! Japanese support and voice conversation functionExplaining how to use the ChatGPT app! Japanese support and voice conversation functionMay 14, 2025 am 04:59 AM

ChatGPT App: Unleash your creativity with the AI ​​assistant! Beginner's Guide The ChatGPT app is an innovative AI assistant that handles a wide range of tasks, including writing, translation, and question answering. It is a tool with endless possibilities that is useful for creative activities and information gathering. In this article, we will explain in an easy-to-understand way for beginners, from how to install the ChatGPT smartphone app, to the features unique to apps such as voice input functions and plugins, as well as the points to keep in mind when using the app. We'll also be taking a closer look at plugin restrictions and device-to-device configuration synchronization

How do I use the Chinese version of ChatGPT? Explanation of registration procedures and feesHow do I use the Chinese version of ChatGPT? Explanation of registration procedures and feesMay 14, 2025 am 04:56 AM

ChatGPT Chinese version: Unlock new experience of Chinese AI dialogue ChatGPT is popular all over the world, did you know it also offers a Chinese version? This powerful AI tool not only supports daily conversations, but also handles professional content and is compatible with Simplified and Traditional Chinese. Whether it is a user in China or a friend who is learning Chinese, you can benefit from it. This article will introduce in detail how to use ChatGPT Chinese version, including account settings, Chinese prompt word input, filter use, and selection of different packages, and analyze potential risks and response strategies. In addition, we will also compare ChatGPT Chinese version with other Chinese AI tools to help you better understand its advantages and application scenarios. OpenAI's latest AI intelligence

5 AI Agent Myths You Need To Stop Believing Now5 AI Agent Myths You Need To Stop Believing NowMay 14, 2025 am 04:54 AM

These can be thought of as the next leap forward in the field of generative AI, which gave us ChatGPT and other large-language-model chatbots. Rather than simply answering questions or generating information, they can take action on our behalf, inter

An easy-to-understand explanation of the illegality of creating and managing multiple accounts using ChatGPTAn easy-to-understand explanation of the illegality of creating and managing multiple accounts using ChatGPTMay 14, 2025 am 04:50 AM

Efficient multiple account management techniques using ChatGPT | A thorough explanation of how to use business and private life! ChatGPT is used in a variety of situations, but some people may be worried about managing multiple accounts. This article will explain in detail how to create multiple accounts for ChatGPT, what to do when using it, and how to operate it safely and efficiently. We also cover important points such as the difference in business and private use, and complying with OpenAI's terms of use, and provide a guide to help you safely utilize multiple accounts. OpenAI

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software