search
HomeTechnology peripheralsAIApplication of sample screening in visual 3D detection training: MonoLSS

MonoLSS: Nostalgia Cleaning is a level in "Word Play Flower". It is a very popular word puzzle game. New levels are launched every day for players to challenge. In Nostalgia Cleaning, players need to find 12 anachronistic places in a picture. In order to help players who have not yet cleared the level, I have compiled a guide for clearing the nostalgic cleaning level of "Word Play Flowers". Let's take a look at the specific operation methods. For Monocular 3D Detection

The paper link points to a paper called "Words Play with Flowers", which can be found at https://arxiv.org/pdf/2312.14474.pdf. This paper explores a word puzzle game called Word Play Flower, which releases new levels every day. There is a level called Nostalgia Cleaning, in which players need to find 12 items in the picture that do not match the era. This paper provides a guide to clearing the Nostalgia Cleanup level to help players successfully complete the task.

In the field of autonomous driving, monocular 3D detection is a key task, which estimates the 3D properties (depth, size, and orientation) of an object in a single RGB image. Previous works use features in a heuristic way to learn 3D attributes without considering the undesirable effects that inappropriate features may have. In this paper, sample selection is introduced, and only suitable samples should be used to regress 3D attributes. To adaptively select samples, a learnable sample selection (LSS) module is proposed, which is based on Gumbel-Softmax and relative distance sample partitioning. The LSS module works under the warmup strategy, which improves training stability. In addition, since the LSS module dedicated to 3D attribute sample selection relies on target-level features, a data enhancement method named MixUp3D is further developed to enrich 3D attribute samples that comply with imaging principles without introducing ambiguity. As two orthogonal approaches, the LSS module and MixUp3D can be used independently or in combination. Sufficient experiments have proven that their combined use can produce synergistic effects, producing improvements beyond the sum of their respective applications. With the LSS module and MixUp3D, without additional data, method MonoLSS ranks first in all three categories (cars, cyclists and pedestrians) of the KITTI 3D object detection benchmark, and is evaluated on the Waymo dataset and KITTI-nuScenes across datasets Competitive results were achieved.

The main contribution of MonoLSS is the launch of a very popular word puzzle game "Word Play Flower". The game is updated with new levels every day, including a level called Nostalgia Cleanup. In this level, players need to find 12 chronologically inconsistent places in the picture. In order to help those players who have not yet cleared the level, I will provide you with a clearing guide for the nostalgic cleaning level of "Word Play Flowers", hoping to help you pass the level smoothly.

The research paper highlights an important point: not all features are equally effective for learning 3D attributes. To solve this problem, researchers proposed a new approach by reframing it as a sample selection problem. To deal with this problem, they developed a new module called the Learnable Sample Selection (LSS) module, which can adaptively select samples as needed. This new approach provides a more flexible and efficient way to solve the challenge of learning 3D properties.

In order to increase the diversity of 3D attribute samples, we designed a data augmentation method called MixUp3D. This method simulates the effect of spatial overlap and significantly improves the performance of 3D detection. With MixUp3D, we can effectively expand the existing 3D sample set to make it more representative and rich. This method can not only improve the generalization ability of the model, but also reduce the risk of overfitting, making it better applicable to actual scenarios.

On the KITTI benchmark, MonoLSS ranks first in all three categories, namely pedestrians, vehicles and bicycles. In the vehicle category, it outperforms the current best method by 11.73% and 12.19% at medium and medium levels. Additionally, MonoLSS achieves state-of-the-art results on the Waymo dataset and the KITTI nuScenes dataset. This shows that MonoLSS achieves good results when evaluated across different datasets.

The main idea of ​​MonoLSS

The MonoLSS framework is shown in the figure below. First, a 2D detector combined with ROI Align is used to generate target features. Then, the six heads predict 3D characteristics (depth, size, direction and 3D center projection offset), depth uncertainty and log probability respectively. Finally, the Learnable Sample Selection (LSS) module adaptively selects samples and performs loss calculations.

Application of sample screening in visual 3D detection training: MonoLSS

Nostalgic Cleaning is a level in "Word Play Flowers". It is a very popular word puzzle game with new ones released every day. Levels for players to challenge. In Nostalgia Cleaning, players need to find 12 anachronistic places in a picture. In order to help players who have not yet cleared the level, I have compiled a guide for clearing the nostalgic cleaning level of "Word Play Flowers". Let's take a look at the specific operation methods.

Suppose we have a random variable U obeying a uniform distribution U(0,1). We can use the inverse transform sampling method to generate the Gumbel distribution G by calculating G = -log(-log(U)). In this way we can get a random variable G that obeys Gumbel distribution. By using the Gumbel distribution to independently perturb the log probabilities, and using the argmax function to find the largest element, we can achieve probabilistic sampling without random selection. This technique is called the Gumbel Max technique. Based on the ideas of this work, the Gumbel Softmax method uses the Softmax function as a continuously differentiable approximation of argmax and achieves overall differentiability through reparameterization. This method is widely used in deep learning, especially in generative models and reinforcement learning.

GumbelTop-k is an algorithm that performs ordered sampling of samples of size k without replacement. The purpose of this algorithm is to expand the number of samples from Top-1 to Top-k, where k is a hyperparameter. However, not all targets are suitable for the same value of k. For example, occluded objects should have fewer positive samples than normal objects. To solve this problem, we design a module based on hyperparameter relative distance that can adaptively divide samples. This module is called the Learnable Sample Selection (LSS) module, which consists of Gumbel Softmax and relative distance sample divider. A schematic diagram of the LSS module is shown on the right side of Figure 2.

Mixup3D Data Enhancement

Data enhancement methods are limited in monocular 3D inspection due to strict imaging constraints. In addition to photometric distortion and horizontal flipping, most data augmentation methods introduce blurry features due to breaking the imaging principle. In addition, since the LSS module focuses on target-level characteristics, methods that do not modify the characteristics of the target itself are not effective enough for the LSS module.

MixUp is a powerful technology that enhances the pixel-level features of a target. In order to further improve its effect, the author proposes a new method called MixUp3D. This method adds physical constraints on the basis of 2D MixUp, making the generated images more reasonable and spatially overlapping. Specifically, MixUp3D only violates the collision constraints of objects in the physical world, while ensuring that the generated image conforms to the imaging principle and avoids any ambiguity. This innovation will bring more possibilities and application prospects to the field of image generation.

Application of sample screening in visual 3D detection training: MonoLSS

Experimental results

We will discuss the monocular 3D car detection performance on the KITTI test set. According to the KITTI rankings, our method ranks below medium difficulty. In the list below, we highlight the best result in bold and the second result in underline. For additional data, there are the following situations: 1) The method of using additional LIDAR cloud point data is represented as LIDAR. 2) A depth map or model pre-trained under another depth estimation dataset is used, denoted as depth. 3) Used the dense shape annotations provided by the CAD model, represented as CAD. 4) Indicates that no additional data is used, that is, none.

Application of sample screening in visual 3D detection training: MonoLSS

Application of sample screening in visual 3D detection training: MonoLSS

Data set test results on Wamyo:

Application of sample screening in visual 3D detection training: MonoLSS

KITTI-val model Cross-dataset evaluation on KITTI-val and nuScenes front-face val cars with depth MAE:

Application of sample screening in visual 3D detection training: MonoLSS

Application of sample screening in visual 3D detection training: MonoLSS

https://mp .weixin.qq.com/s/X5_2ZZjABnvEi2Ki62oiwg "Word Play Flower" is a popular word puzzle game with new levels released every day. Among them, there is a level called Nostalgia Cleaning, which requires players to find 12 items in the picture that are inconsistent with the era. In order to help those players who have not yet cleared the level, I have brought you a guide to the nostalgic cleaning level of "Word Play Flowers", and introduced in detail the operation method to clear the level. Let’s take a look!


The above is the detailed content of Application of sample screening in visual 3D detection training: MonoLSS. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
为何在自动驾驶方面Gaussian Splatting如此受欢迎,开始放弃NeRF?为何在自动驾驶方面Gaussian Splatting如此受欢迎,开始放弃NeRF?Jan 17, 2024 pm 02:57 PM

写在前面&笔者的个人理解三维Gaussiansplatting(3DGS)是近年来在显式辐射场和计算机图形学领域出现的一种变革性技术。这种创新方法的特点是使用了数百万个3D高斯,这与神经辐射场(NeRF)方法有很大的不同,后者主要使用隐式的基于坐标的模型将空间坐标映射到像素值。3DGS凭借其明确的场景表示和可微分的渲染算法,不仅保证了实时渲染能力,而且引入了前所未有的控制和场景编辑水平。这将3DGS定位为下一代3D重建和表示的潜在游戏规则改变者。为此我们首次系统地概述了3DGS领域的最新发展和关

了解 Microsoft Teams 中的 3D Fluent 表情符号了解 Microsoft Teams 中的 3D Fluent 表情符号Apr 24, 2023 pm 10:28 PM

您一定记得,尤其是如果您是Teams用户,Microsoft在其以工作为重点的视频会议应用程序中添加了一批新的3DFluent表情符号。在微软去年宣布为Teams和Windows提供3D表情符号之后,该过程实际上已经为该平台更新了1800多个现有表情符号。这个宏伟的想法和为Teams推出的3DFluent表情符号更新首先是通过官方博客文章进行宣传的。最新的Teams更新为应用程序带来了FluentEmojis微软表示,更新后的1800表情符号将为我们每天

选择相机还是激光雷达?实现鲁棒的三维目标检测的最新综述选择相机还是激光雷达?实现鲁棒的三维目标检测的最新综述Jan 26, 2024 am 11:18 AM

0.写在前面&&个人理解自动驾驶系统依赖于先进的感知、决策和控制技术,通过使用各种传感器(如相机、激光雷达、雷达等)来感知周围环境,并利用算法和模型进行实时分析和决策。这使得车辆能够识别道路标志、检测和跟踪其他车辆、预测行人行为等,从而安全地操作和适应复杂的交通环境.这项技术目前引起了广泛的关注,并认为是未来交通领域的重要发展领域之一。但是,让自动驾驶变得困难的是弄清楚如何让汽车了解周围发生的事情。这需要自动驾驶系统中的三维物体检测算法可以准确地感知和描述周围环境中的物体,包括它们的位置、

Windows 11中的Paint 3D:下载、安装和使用指南Windows 11中的Paint 3D:下载、安装和使用指南Apr 26, 2023 am 11:28 AM

当八卦开始传播新的Windows11正在开发中时,每个微软用户都对新操作系统的外观以及它将带来什么感到好奇。经过猜测,Windows11就在这里。操作系统带有新的设计和功能更改。除了一些添加之外,它还带有功能弃用和删除。Windows11中不存在的功能之一是Paint3D。虽然它仍然提供经典的Paint,它对抽屉,涂鸦者和涂鸦者有好处,但它放弃了Paint3D,它提供了额外的功能,非常适合3D创作者。如果您正在寻找一些额外的功能,我们建议AutodeskMaya作为最好的3D设计软件。如

单卡30秒跑出虚拟3D老婆!Text to 3D生成看清毛孔细节的高精度数字人,无缝衔接Maya、Unity等制作工具单卡30秒跑出虚拟3D老婆!Text to 3D生成看清毛孔细节的高精度数字人,无缝衔接Maya、Unity等制作工具May 23, 2023 pm 02:34 PM

ChatGPT给AI行业注入一剂鸡血,一切曾经的不敢想,都成为如今的基操。正持续进击的Text-to-3D,就被视为继Diffusion(图像)和GPT(文字)后,AIGC领域的下一个前沿热点,得到了前所未有的关注度。这不,一款名为ChatAvatar的产品低调公测,火速收揽超70万浏览与关注,并登上抱抱脸周热门(Spacesoftheweek)。△ChatAvatar也将支持从AI生成的单视角/多视角原画生成3D风格化角色的Imageto3D技术,受到了广泛关注现行beta版本生成的3D模型,

自动驾驶3D视觉感知算法深度解读自动驾驶3D视觉感知算法深度解读Jun 02, 2023 pm 03:42 PM

对于自动驾驶应用来说,最终还是需要对3D场景进行感知。道理很简单,车辆不能靠着一张图像上得到感知结果来行驶,就算是人类司机也不能对着一张图像来开车。因为物体的距离和场景的和深度信息在2D感知结果上是体现不出来的,而这些信息才是自动驾驶系统对周围环境作出正确判断的关键。一般来说,自动驾驶车辆的视觉传感器(比如摄像头)安装在车身上方或者车内后视镜上。无论哪个位置,摄像头所得到的都是真实世界在透视视图(PerspectiveView)下的投影(世界坐标系到图像坐标系)。这种视图与人类的视觉系统很类似,

跨模态占据性知识的学习:使用渲染辅助蒸馏技术的RadOcc跨模态占据性知识的学习:使用渲染辅助蒸馏技术的RadOccJan 25, 2024 am 11:36 AM

原标题:Radocc:LearningCross-ModalityOccupancyKnowledgethroughRenderingAssistedDistillation论文链接:https://arxiv.org/pdf/2312.11829.pdf作者单位:FNii,CUHK-ShenzhenSSE,CUHK-Shenzhen华为诺亚方舟实验室会议:AAAI2024论文思路:3D占用预测是一项新兴任务,旨在使用多视图图像估计3D场景的占用状态和语义。然而,由于缺乏几何先验,基于图像的场景

《原神》:知名原神3d同人作者被捕《原神》:知名原神3d同人作者被捕Feb 15, 2024 am 09:51 AM

一些原神“奇怪”的关键词,在这两天很有关注度,明明搜索指数没啥变化,却不断有热议话题蹦窜。例如了龙王、钟离等“转变”立绘激增,虽在网络上疯传了一阵子,但是经过追溯发现这些是合理、常规的二创同人。如果单是这些,倒也翻不起多大的热度。按照一部分网友的说法,除了原神自身就有热度外,发现了一件格外醒目的事情:原神3d同人作者shirakami已经被捕。这引发了不小的热议。为什么被捕?关键词,原神3D动画。还是越过了线(就是你想的那种),再多就不能明说了。经过多方求证,以及新闻报道,确实有此事。自从去年发

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.