?
序言:
用户注册时候,录入了全角手机号码,所以导致短信系统根据手机字段发送短信失败,现在问题来了,如何把全角手机号码变成半角手机号码?
1,手机号码全角转换成半角
先查询出来全角半角都存在的手机号码的数据
SELECT a.username ,COUNT(1) AS num
FROM(
SELECT REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(uu.user_name,'0','0'),'1','1'),'2','2'),'3','3'),'4','4') ,'5','5'),'6','6'),'7','7') ,'8','8'),'9','9') AS username
FROM UC_USER uu WHERE uu.`USER_NAME` IS NOT NULL
)a GROUP BY a.username HAVING (COUNT(1)>1)
;
得到如下重复记录:
("MB.134xx76802x" ,
"MB.136xx88105x" ,
"MB.152xx80801x" ,
"MB.157xx49518x" ,
"MB.186xx88282x" ,
"MB.189xx94855x" ); )
然后删除掉已经存在半角的全角手机号码记录,不然转换后会有重复的手机号码。
DELETE FROM `UC_USER`
WHERE MOBILE LIKE '%1%'
AND REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(user_name,'0','0'),'1','1'),'2','2'),'3','3'),'4','4') ,'5','5'),'6','6'),'7','7') ,'8','8'),'9','9')
IN("MB.134xx76802x" ,
"MB.136xx88105x" ,
"MB.152xx80801x" ,
"MB.157xx49518x" ,
"MB.186xx88282x" ,
"MB.189xx94855x" );
之后再修改全角手机号码为半角手机号码
UPDATE UC_USER uu
SET uu.`MOBILE`=REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(uu.`MOBILE`,'0','0'),'1','1'),'2','2'),'3','3'),'4','4') ,'5','5'),'6','6'),'7','7') ,'8','8'),'9','9'),
uu.`USER_NAME`=REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(uu.user_name,'0','0'),'1','1'),'2','2'),'3','3'),'4','4') ,'5','5'),'6','6'),'7','7') ,'8','8'),'9','9')
WHERE uu.`MOBILE` IS NOT NULL;
2,如何把所以的全角转换成半角
上面只是人为用比较笨拙的10个replace将全角转换成了半角,有没有一种通用的思路或者方法来实现呢?于是google了很多资料,写下如下的存储函数。
DELIMITER $$
USE csdn $$
CREATE FUNCTION `csdn`.`func_convert`(p_str VARCHAR(200),flag INT)
RETURNS VARCHAR(200)
BEGIN
DECLARE pat VARCHAR(8);
DECLARE step INT ;
DECLARE i INT ;
DECLARE spc INT;
DECLARE str VARCHAR(200);
SET str=p_str;
IF flag=0 THEN /**全角换算半角*/
SET pat= N'%[!-~]%' ;
SET step= -65248 ;
SET str = REPLACE(str,N' ',N' ');
ELSE /**半角换算全角*/
SET pat= N'%[!-~]%' ;
SET step= 65248 ;
SET str= REPLACE(str,N' ',N' ') ;
END IF;
SET i=LOCATE(pat,str) ;
loop1:WHILE i>0 DO
/**开始将全角转换成半角*/
SET str= REPLACE(str, SUBSTRING(str,i,1), CHAR(UNICODE(SUBSTRING(str,i,1))+step));
SET i=INSTR(str,pat) ;
END WHILE loop1;
RETURN(str)
END $$
DELIMITER ;
3,google出来的sqlserver中的全角半角转换函数。
DELIMITER $$
CREATE
/*[DEFINER = { user | CURRENT_USER }]*/
FUNCTION `test`.`u_convert`(@str NVARCHAR(4000),@flag BIT )
RETURNS NVARCHAR
BEGIN
DECLARE @pat NVARCHAR(8);
DECLARE @step INTEGER;
DECLARE @i INTEGER;
DECLARE @spc INTEGER;
IF @flag=0
BEGIN
SELECT N'%[!-~]%' INTO @pat;
SELECT -65248 INTO @step;
SELECT REPLACE(@str,N' ',N' ') INTO @str;
END
ELSE
BEGIN
SELECT N'%[!-~]%' INTO @pat;
SELECT 65248 INTO @step;
SELECT REPLACE(@str,N' ',N' ') INTO @str;
END
SELECT patindex(@pat COLLATE LATIN1_GENERAL_BIN,@str) INTO @i;
WHILE @i>0 DO
SELECT REPLACE(@str, SUBSTRING(@str,@i,1), NCHAR(UNICODE(SUBSTRING(@str,@i,1))+@step)) INTO @str;
SELECT patindex(@pat COLLATE LATIN1_GENERAL_BIN,@str) INTO @i;
END WHILE
RETURN(@str)
END $$
DELIMITER ;
----------------------------------------------------------------------------------------------------------------
原博客地址: http://blog.itpub.net/26230597/viewspace-1316445/
原作者:黄杉 (mchdba)
----------------------------------------------------------------------------------------------------------------

Stored procedures are precompiled SQL statements in MySQL for improving performance and simplifying complex operations. 1. Improve performance: After the first compilation, subsequent calls do not need to be recompiled. 2. Improve security: Restrict data table access through permission control. 3. Simplify complex operations: combine multiple SQL statements to simplify application layer logic.

The working principle of MySQL query cache is to store the results of SELECT query, and when the same query is executed again, the cached results are directly returned. 1) Query cache improves database reading performance and finds cached results through hash values. 2) Simple configuration, set query_cache_type and query_cache_size in MySQL configuration file. 3) Use the SQL_NO_CACHE keyword to disable the cache of specific queries. 4) In high-frequency update environments, query cache may cause performance bottlenecks and needs to be optimized for use through monitoring and adjustment of parameters.

The reasons why MySQL is widely used in various projects include: 1. High performance and scalability, supporting multiple storage engines; 2. Easy to use and maintain, simple configuration and rich tools; 3. Rich ecosystem, attracting a large number of community and third-party tool support; 4. Cross-platform support, suitable for multiple operating systems.

The steps for upgrading MySQL database include: 1. Backup the database, 2. Stop the current MySQL service, 3. Install the new version of MySQL, 4. Start the new version of MySQL service, 5. Recover the database. Compatibility issues are required during the upgrade process, and advanced tools such as PerconaToolkit can be used for testing and optimization.

MySQL backup policies include logical backup, physical backup, incremental backup, replication-based backup, and cloud backup. 1. Logical backup uses mysqldump to export database structure and data, which is suitable for small databases and version migrations. 2. Physical backups are fast and comprehensive by copying data files, but require database consistency. 3. Incremental backup uses binary logging to record changes, which is suitable for large databases. 4. Replication-based backup reduces the impact on the production system by backing up from the server. 5. Cloud backups such as AmazonRDS provide automation solutions, but costs and control need to be considered. When selecting a policy, database size, downtime tolerance, recovery time, and recovery point goals should be considered.

MySQLclusteringenhancesdatabaserobustnessandscalabilitybydistributingdataacrossmultiplenodes.ItusestheNDBenginefordatareplicationandfaulttolerance,ensuringhighavailability.Setupinvolvesconfiguringmanagement,data,andSQLnodes,withcarefulmonitoringandpe

Optimizing database schema design in MySQL can improve performance through the following steps: 1. Index optimization: Create indexes on common query columns, balancing the overhead of query and inserting updates. 2. Table structure optimization: Reduce data redundancy through normalization or anti-normalization and improve access efficiency. 3. Data type selection: Use appropriate data types, such as INT instead of VARCHAR, to reduce storage space. 4. Partitioning and sub-table: For large data volumes, use partitioning and sub-table to disperse data to improve query and maintenance efficiency.

TooptimizeMySQLperformance,followthesesteps:1)Implementproperindexingtospeedupqueries,2)UseEXPLAINtoanalyzeandoptimizequeryperformance,3)Adjustserverconfigurationsettingslikeinnodb_buffer_pool_sizeandmax_connections,4)Usepartitioningforlargetablestoi


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Dreamweaver CS6
Visual web development tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

WebStorm Mac version
Useful JavaScript development tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment
