search
HomeTechnology peripheralsAIBreakthrough in RNA drug discovery, first RNA basic model reveals measurement technology at the level of more than 1 billion nucleotides

Breakthrough in RNA drug discovery, first RNA basic model reveals measurement technology at the level of more than 1 billion nucleotides

Editor | KX

Recently, biotechnology company Atomic AI announced the successful development of the first large-scale language model (LLM) that utilizes chemical mapping data. Atomic AI combines advanced machine learning techniques with the latest structural biology to solve the mysteries of RNA drug discovery

Researchers at Atomic AI have created a new platform component that leverages in-house custom wet Laboratory analysis of large-scale chemical mapping data collected. The scientists collected data on millions of RNA sequences and made more than a billion nucleotide-level measurements. Trained on this data, ATOM-1 develops a rich understanding of RNA, which can then be used to optimize the properties of different RNA patterns.

Breakthrough in RNA drug discovery, first RNA basic model reveals measurement technology at the level of more than 1 billion nucleotides

Atomic AI twitter address: https://twitter.com/AtomicAICo/status/1735659469609037974

Atomic AI published an article on December 14 A preprint paper titled "ATOM-1: A basic model of RNA structure and function based on chemical map data" was published on bioRxiv. In this paper, Atomic AI describes in detail their unique ATOM-1™ platform components. This basic model can accurately predict the structure and function of RNA and plays an important role in improving the development of RNA therapeutics

Breakthrough in RNA drug discovery, first RNA basic model reveals measurement technology at the level of more than 1 billion nucleotides

Paper link: https://doi.org/10.1101/2023.12.13.571579

Dr. Manjunath Ramarao, Chief Scientific Officer of Atomic AI Said:

"ATOM-1 is able to predict structural and functional aspects of RNA and key features of RNA patterns, including small molecules, mRNA vaccines, siRNA and circular RNA, to Help design treatments efficiently. Our goal is to create a streamlined drug discovery process to advance our own pipeline and work with partners to help validate their RNA targets and tools to ultimately deliver them to patients quickly and more effectively The treatments needed."

Stephan Eismann, Ph.D., founding scientist and director of machine learning at Atomic AI said:

"By building a large dataset based on RNA nucleotide modifications and next-generation sequencing, the Atomic AI team created the first RNA-based model. We are excited about the broad application of our model to other aspects of RNA research and its use in optimizing RNA-based drugs. We are excited about the potential of various properties, such as stability and translation efficiency of mRNA vaccines or activity and toxicity of siRNA."
Lack of available high-quality RNA data

RNA-based drugs and RNA-targeted drugs are emerging as promising new ways to treat disease. Optimizing these therapeutics requires time-consuming and expensive experimental screening, while rational design requires an accurate understanding of RNA structure and function. To date, there has been little high-quality RNA data available to the life sciences community. Because existing methods, such as animal models for gathering in vivo information or cryo-electron microscopy (cryo-EM) for determining 3D RNA structure, are difficult to use and time-consuming. Optimizing key RNA therapeutic properties, including stability, toxicity, and translation efficiency, has been challenging due to a lack of “real” data

First RNA-based model trained on chemical map data

To address this design challenge, Atomic AI launched ATOM-1, the first RNA-based model trained on chemical map data, through a data collection strategy developed specifically for machine learning training. Using a small probe neural network on top of ATOM-1 embeddings, we demonstrate that this model has developed a rich internal representation of RNA. Trained with a limited amount of additional data, these small networks achieved state-of-the-art accuracy on key RNA prediction tasks, demonstrating that this approach could enable therapeutic design across the entire RNA field.

Breakthrough in RNA drug discovery, first RNA basic model reveals measurement technology at the level of more than 1 billion nucleotides

Illustration: ATOM-1 probe for secondary structure prediction with high accuracy generalization. (Source: paper)

ATOM-1 is able to predict the secondary and tertiary structures of RNA more accurately than previously published methods

Breakthrough in RNA drug discovery, first RNA basic model reveals measurement technology at the level of more than 1 billion nucleotides

Illustration: A linear probe with 257 parameters trained on a secondary structure generalizes to other RNAs. (Source: Paper)

Breakthrough in RNA drug discovery, first RNA basic model reveals measurement technology at the level of more than 1 billion nucleotides

#Illustration: ATOM-1 probe for tertiary structure prediction demonstrates state-of-the-art accuracy. (Source: Paper)

Notably, in a retrospective analysis comparing ATOM-1 to other computational tools for vaccine design, ATOM-1 outperformed all 1,600 other methods of predicting mRNA stability in solution . Based on these results, new underlying models can be adapted with limited data to predict different properties of RNA, not only determining the structure of RNA but also predicting other key features of RNA therapeutics.

Breakthrough in RNA drug discovery, first RNA basic model reveals measurement technology at the level of more than 1 billion nucleotides

Illustration: Structural predictions of ATOM-1 probe compared to baseline without base model embedding. (Source: Paper)

For the past two and a half years, we have been purposefully designing and collecting data to train our underlying models, said Dr. Raphael Townshend, founder and CEO of "Atomic AI." "Through machine learning and generative artificial intelligence, we now have a unique opportunity that ATOM-1 can be tuned to predict RNA structure and function with high accuracy from a small number of initial data points."

倴Science cover, Atomic AI’s proprietary AI-driven 3D RNA structure engine

Atomic AI is an emerging biotechnology company founded in May 2021 and headquartered in the San Francisco Bay Area. The company is focused on leveraging the fusion of machine learning and structural biology to advance RNA drug discovery. They have developed a proprietary platform that leverages fundamental deep learning models to explore and design RNA-targeting small molecules, RNA-based drugs, and RNA tools

Related articles on Atomic AI's technology "Geometric Deep Learning of RNA Structures" "("Geometric deep learning of RNA structure") has been featured on the cover of Science magazine.

Breakthrough in RNA drug discovery, first RNA basic model reveals measurement technology at the level of more than 1 billion nucleotides

Science Cover article link: https://www.science.org/doi/10.1126/science.abe5650

Atomic AI’s PARSE engine is a An artificial intelligence-driven 3D RNA structure engine that generates RNA structure data sets. By combining fundamental models from machine learning with large-scale in-house experiments in the wet lab, the engine is able to reveal functional binders of RNA targets. Its breakthrough technology predicts structuring with unprecedented speed and accuracy. , ligandable RNA motifs, which is a key obstacle in current RNA drug discovery methods.

By combining advanced algorithms and large-scale experimental biology research, novel RNA-targeted and RNA-based drugs can be designed to treat diseases for which there are currently no marketed drugs

Pass Leveraging our database of 3D RNA structures discovered and engineered, Atomic AI plans to advance the development of a pipeline of rationally designed small molecule drug candidates

Atomic AI has raised a total of $42 million in funding across two investment rounds, the latest Series A financing was obtained in January 2023. Atomic AI has raised a total of $42 million in funding across two investment rounds, the latest of which was Series A funding in January 2023

Atomic AI is leading the way in artificial intelligence-enhanced structural biology, It is supported by an interdisciplinary team of machine learning researchers, medicinal chemists, engineers and experimental biologists, as well as strategic scientific advisors and world-class investors. By changing the design of RNA drugs, they successfully treated untreatable diseases

Atomic AI official website: https://atomic.ai/

Reference content: https://www.businesswire. com/news/home/20231215527488/en/

The above is the detailed content of Breakthrough in RNA drug discovery, first RNA basic model reveals measurement technology at the level of more than 1 billion nucleotides. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:机器之心. If there is any infringement, please contact admin@php.cn delete
五个时间序列预测的深度学习模型对比总结五个时间序列预测的深度学习模型对比总结May 05, 2023 pm 05:16 PM

MakridakisM-Competitions系列(分别称为M4和M5)分别在2018年和2020年举办(M6也在今年举办了)。对于那些不了解的人来说,m系列得比赛可以被认为是时间序列生态系统的一种现有状态的总结,为当前得预测的理论和实践提供了经验和客观的证据。2018年M4的结果表明,纯粹的“ML”方法在很大程度上胜过传统的统计方法,这在当时是出乎意料的。在两年后的M5[1]中,最的高分是仅具有“ML”方法。并且所有前50名基本上都是基于ML的(大部分是树型模型)。这场比赛看到了LightG

RLHF与AlphaGo核心技术强强联合,UW/Meta让文本生成能力再上新台阶RLHF与AlphaGo核心技术强强联合,UW/Meta让文本生成能力再上新台阶Oct 27, 2023 pm 03:13 PM

在一项最新的研究中,来自UW和Meta的研究者提出了一种新的解码算法,将AlphaGo采用的蒙特卡洛树搜索算法(Monte-CarloTreeSearch,MCTS)应用到经过近端策略优化(ProximalPolicyOptimization,PPO)训练的RLHF语言模型上,大幅提高了模型生成文本的质量。PPO-MCTS算法通过探索与评估若干条候选序列,搜索到更优的解码策略。通过PPO-MCTS生成的文本能更好满足任务要求。论文链接:https://arxiv.org/pdf/2309.150

MIT团队运用机器学习闭环自主分子发现平台,成功发现、合成和描述了303种新分子MIT团队运用机器学习闭环自主分子发现平台,成功发现、合成和描述了303种新分子Jan 04, 2024 pm 05:38 PM

编辑|X传统意义上,发现所需特性的分子过程一直是由手动实验、化学家的直觉以及对机制和第一原理的理解推动的。随着化学家越来越多地使用自动化设备和预测合成算法,自主研究设备越来越接近实现。近日,来自MIT的研究人员开发了由集成机器学习工具驱动的闭环自主分子发现平台,以加速具有所需特性的分子的设计。无需手动实验即可探索化学空间并利用已知的化学结构。在两个案例研究中,该平台尝试了3000多个反应,其中1000多个产生了预测的反应产物,提出、合成并表征了303种未报道的染料样分子。该研究以《Autonom

Code Llama代码能力飙升,微调版HumanEval得分超越GPT-4,一天发布Code Llama代码能力飙升,微调版HumanEval得分超越GPT-4,一天发布Aug 26, 2023 pm 09:01 PM

昨天,Meta开源专攻代码生成的基础模型CodeLlama,可免费用于研究以及商用目的。CodeLlama系列模型有三个参数版本,参数量分别为7B、13B和34B。并且支持多种编程语言,包括Python、C++、Java、PHP、Typescript(Javascript)、C#和Bash。Meta提供的CodeLlama版本包括:代码Llama,基础代码模型;代码羊-Python,Python微调版本;代码Llama-Instruct,自然语言指令微调版就其效果来说,CodeLlama的不同版

AI助力脑机接口研究,纽约大学突破性神经语音解码技术,登Nature子刊AI助力脑机接口研究,纽约大学突破性神经语音解码技术,登Nature子刊Apr 17, 2024 am 08:40 AM

作者|陈旭鹏编辑|ScienceAI由于神经系统的缺陷导致的失语会导致严重的生活障碍,它可能会限制人们的职业和社交生活。近年来,深度学习和脑机接口(BCI)技术的飞速发展为开发能够帮助失语者沟通的神经语音假肢提供了可行性。然而,神经信号的语音解码面临挑战。近日,约旦大学VideoLab和FlinkerLab的研究者开发了一个新型的可微分语音合成器,可以利用一个轻型的卷积神经网络将语音编码为一系列可解释的语音参数(例如音高、响度、共振峰频率等),并通过可微分神经网络将这些参数合成为语音。这个合成器

准确率 >98%,基于电子密度的 GPT 用于化学研究,登 Nature 子刊准确率 >98%,基于电子密度的 GPT 用于化学研究,登 Nature 子刊Mar 27, 2024 pm 02:16 PM

编辑|紫罗可合成分子的化学空间是非常广阔的。有效地探索这个领域需要依赖计算筛选技术,比如深度学习,以便快速地发现各种有趣的化合物。将分子结构转换为数字表示形式,并开发相应算法生成新的分子结构是进行化学发现的关键。最近,英国格拉斯哥大学的研究团队提出了一种基于电子密度训练的机器学习模型,用于生成主客体binders。这种模型能够以简化分子线性输入规范(SMILES)格式读取数据,准确率高达98%,从而实现对分子在二维空间的全面描述。通过变分自编码器生成主客体系统的电子密度和静电势的三维表示,然后通

手机摄影技术让以假乱真的好莱坞级电影特效视频走红手机摄影技术让以假乱真的好莱坞级电影特效视频走红Sep 07, 2023 am 09:41 AM

一个普通人用一台手机就能制作电影特效的时代已经来了。最近,一个名叫Simulon的3D技术公司发布了一系列特效视频,视频中的3D机器人与环境无缝融合,而且光影效果非常自然。呈现这些效果的APP也叫Simulon,它能让使用者通过手机摄像头的实时拍摄,直接渲染出CGI(计算机生成图像)特效,就跟打开美颜相机拍摄一样。在具体操作中,你要先上传一个3D模型(比如图中的机器人)。Simulon会将这个模型放置到你拍摄的现实世界中,并使用准确的照明、阴影和反射效果来渲染它们。整个过程不需要相机解算、HDR

谷歌用大型模型训练机器狗理解模糊指令,激动不已准备去野餐谷歌用大型模型训练机器狗理解模糊指令,激动不已准备去野餐Jan 16, 2024 am 11:24 AM

人类和四足机器人之间简单有效的交互是创造能干的智能助理机器人的途径,其昭示着这样一个未来:技术以超乎我们想象的方式改善我们的生活。对于这样的人类-机器人交互系统,关键是让四足机器人有能力响应自然语言指令。近来大型语言模型(LLM)发展迅速,已经展现出了执行高层规划的潜力。然而,对LLM来说,理解低层指令依然很难,比如关节角度目标或电机扭矩,尤其是对于本身就不稳定、必需高频控制信号的足式机器人。因此,大多数现有工作都会假设已为LLM提供了决定机器人行为的高层API,而这就从根本上限制了系统的表现能

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft