


Common linear data structures in Java and their implementation: Exploration from stack to queue
From stack to queue: Exploring common linear data structures in Java and how they are implemented
Introduction:
In computer science, data structures are the organization and implementation of A way to store data. One of them is linear data structure, which is characterized by a clear contextual relationship between data elements. In Java development, common linear data structures include stacks and queues, which are used very frequently. This article will explore in depth how stacks and queues are implemented in Java and provide specific code examples.
1. The concept and implementation of stack:
The stack is a Last In First Out (LIFO) data structure. Its characteristic is that insertion and deletion operations can only be performed on the top of the stack. In Java, there are two common implementations of stacks: array-based implementation and linked-list-based implementation.
- Array-based stack implementation:
Array is a continuously stored data structure, which is very suitable for implementing stacks. The following is a sample code of an array-based stack class:
public class ArrayStack { private int[] stack; private int top; // 栈顶指针 public ArrayStack(int capacity) { stack = new int[capacity]; top = -1; } public boolean isEmpty() { return top == -1; } public boolean isFull() { return top == stack.length - 1; } public void push(int item) { if (isFull()) { throw new RuntimeException("Stack is full"); } stack[++top] = item; } public int pop() { if (isEmpty()) { throw new RuntimeException("Stack is empty"); } return stack[top--]; } public int peek() { if (isEmpty()) { throw new RuntimeException("Stack is empty"); } return stack[top]; } }
- Linked list-based stack implementation:
Linked list is a non-continuous storage data structure, which is also suitable for implementation stack. The following is a sample code of a stack class based on a linked list:
public class LinkedStack { private Node top; public LinkedStack() { top = null; } public boolean isEmpty() { return top == null; } public void push(int item) { Node newNode = new Node(item); newNode.next = top; top = newNode; } public int pop() { if (isEmpty()) { throw new RuntimeException("Stack is empty"); } int item = top.data; top = top.next; return item; } public int peek() { if (isEmpty()) { throw new RuntimeException("Stack is empty"); } return top.data; } private class Node { private int data; private Node next; public Node(int data) { this.data = data; this.next = null; } } }
2. The concept and implementation of queue:
The queue is a first in first out (FIFO) data structure. Its characteristic is that it can only insert elements at the end of the queue and delete elements at the head of the queue. In Java, there are two common implementations of queues: array-based implementation and linked-list-based implementation.
- Array-based queue implementation:
Similar to the array-based stack implementation, the following is a sample code for an array-based queue class:
public class ArrayQueue { private int[] queue; private int front; // 队头指针 private int rear; // 队尾指针 public ArrayQueue(int capacity) { queue = new int[capacity + 1]; // 额外预留一个空位 front = rear = 0; } public boolean isEmpty() { return front == rear; } public boolean isFull() { return (rear + 1) % queue.length == front; } public void enqueue(int item) { if (isFull()) { throw new RuntimeException("Queue is full"); } queue[rear] = item; rear = (rear + 1) % queue.length; } public int dequeue() { if (isEmpty()) { throw new RuntimeException("Queue is empty"); } int item = queue[front]; front = (front + 1) % queue.length; return item; } public int peek() { if (isEmpty()) { throw new RuntimeException("Queue is empty"); } return queue[front]; } }
- Queue implementation based on linked list:
Similar to the stack implementation based on linked list, the following is a sample code of a queue class based on linked list:
public class LinkedQueue { private Node front; // 队头指针 private Node rear; // 队尾指针 public LinkedQueue() { front = null; rear = null; } public boolean isEmpty() { return front == null; } public void enqueue(int item) { Node newNode = new Node(item); if (isEmpty()) { front = newNode; rear = newNode; } else { rear.next = newNode; rear = newNode; } } public int dequeue() { if (isEmpty()) { throw new RuntimeException("Queue is empty"); } int item = front.data; front = front.next; if (front == null) { rear = null; } return item; } public int peek() { if (isEmpty()) { throw new RuntimeException("Queue is empty"); } return front.data; } private class Node { private int data; private Node next; public Node(int data) { this.data = data; this.next = null; } } }
Conclusion:
Stack and queue are Java There are many ways to implement linear data structures commonly used in . This article introduces array-based and linked-list-based stack and queue implementations, and provides specific code examples. Developers can choose the appropriate implementation method according to actual needs to improve the efficiency and maintainability of the program.
The above is the detailed content of Common linear data structures in Java and their implementation: Exploration from stack to queue. For more information, please follow other related articles on the PHP Chinese website!

The class loader ensures the consistency and compatibility of Java programs on different platforms through unified class file format, dynamic loading, parent delegation model and platform-independent bytecode, and achieves platform independence.

The code generated by the Java compiler is platform-independent, but the code that is ultimately executed is platform-specific. 1. Java source code is compiled into platform-independent bytecode. 2. The JVM converts bytecode into machine code for a specific platform, ensuring cross-platform operation but performance may be different.

Multithreading is important in modern programming because it can improve program responsiveness and resource utilization and handle complex concurrent tasks. JVM ensures the consistency and efficiency of multithreads on different operating systems through thread mapping, scheduling mechanism and synchronization lock mechanism.

Java's platform independence means that the code written can run on any platform with JVM installed without modification. 1) Java source code is compiled into bytecode, 2) Bytecode is interpreted and executed by the JVM, 3) The JVM provides memory management and garbage collection functions to ensure that the program runs on different operating systems.

Javaapplicationscanindeedencounterplatform-specificissuesdespitetheJVM'sabstraction.Reasonsinclude:1)Nativecodeandlibraries,2)Operatingsystemdifferences,3)JVMimplementationvariations,and4)Hardwaredependencies.Tomitigatethese,developersshould:1)Conduc

Cloud computing significantly improves Java's platform independence. 1) Java code is compiled into bytecode and executed by the JVM on different operating systems to ensure cross-platform operation. 2) Use Docker and Kubernetes to deploy Java applications to improve portability and scalability.

Java'splatformindependenceallowsdeveloperstowritecodeonceandrunitonanydeviceorOSwithaJVM.Thisisachievedthroughcompilingtobytecode,whichtheJVMinterpretsorcompilesatruntime.ThisfeaturehassignificantlyboostedJava'sadoptionduetocross-platformdeployment,s

Containerization technologies such as Docker enhance rather than replace Java's platform independence. 1) Ensure consistency across environments, 2) Manage dependencies, including specific JVM versions, 3) Simplify the deployment process to make Java applications more adaptable and manageable.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Notepad++7.3.1
Easy-to-use and free code editor

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.