


How to implement an online face recognition system using WebSocket and JavaScript
Limited by humans' innate visual processing capabilities, human visual recognition systems cannot be compared with computers in many aspects. For example, human brain power is not enough to recognize a large number of objects in a short time. face. However, in today's advanced computer technology, facial recognition technology has become increasingly mature. Using a combination of computer vision and artificial intelligence, we have been able to develop a variety of facial recognition technologies, one of the most important being online face recognition systems. This article aims to introduce how to use WebSocket and JavaScript to implement an online face recognition system.
First you need to understand what WebSocket is. WebSocket is a network communication protocol based on TCP protocol. It provides a persistent connection between the browser and the server, enabling two-way communication. In this article, we will use WebSocket to send image and recognition information from the client to the server, and to send the recognition results from the server back to the client.
The first step is to create a WebSocket connection. In the client, create a WebSocket connection with the following code snippet:
let socket = new WebSocket("ws://localhost:8080/"); socket.onopen = function() { console.log("WebSocket连接已打开"); }; socket.onmessage = function(event) { console.log(event.data); };
This will open a WebSocket connection on localhost, connecting to port 8080. When the WebSocket connection is opened, the log "WebSocket connection is opened" will be output. When a message is received from the server, the message data is output to the console.
Now we need to implement the function of the client sending image information to the server. There are several methods for capturing images, including the "
let video = document.querySelector('video'); navigator.mediaDevices.getUserMedia({video: true}) .then(function (stream) { video.srcObject = stream; });
It is now possible to draw the captured image into a
let canvas = document.getElementById('canvas'); let context = canvas.getContext('2d'); context.drawImage(video, 0, 0, canvas.width, canvas.height);
The image data can be extracted as a Base64 string and then sent to the server via WebSocket:
let dataUrl = canvas.toDataURL('image/jpeg', 1.0); socket.send(dataUrl);
The server will use OpenCV and Python to process and recognize the received image. The following is a simple Python script that uses OpenCV to cut faces out of images:
import cv2 def detect_faces(image): face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 5) return faces def extract_faces(image_path): image = cv2.imread(image_path) faces = detect_faces(image) for i, (x, y, w, h) in enumerate(faces): face_image = image[y:y+h, x:x+w] cv2.imwrite('face_{}.jpg'.format(i), face_image)
As you can see, this script uses the face detector in OpenCV to detect faces in the image, And cut out the face and save it in the file "face_{}.jpg".
On the server side, you can use Python to write the following WebSocket program.
import asyncio import cv2 import base64 import io from aiohttp import web async def index(request): return web.Response(text="WebSocket服务器已启动!") async def websocket_handler(request): ws = web.WebSocketResponse() await ws.prepare(request) while True: data = await ws.receive() if data.type == web.WSMsgType.TEXT: await ws.send_str("接收到了一张新的图像,请稍候……") img_data = data.data[23:] # 截取“data:image/jpeg;base64,”之后的数据 try: img_bytes = base64.b64decode(img_data) img_stream = io.BytesIO(img_bytes) img_np = cv2.imdecode(np.frombuffer(img_stream.read(), np.uint8), cv2.IMREAD_UNCHANGED) # 图像识别代码 # ... # 向客户端发送识别结果 await ws.send_str("这是一个人脸。") except: await ws.send_str("出错了,无法处理该图像。") elif data.type == web.WSMsgType.ERROR: print("WebSocket连接发生错误! Code:{}".format(ws.exception())) break return ws app = web.Application() app.router.add_get('/', index) app.router.add_get('/ws', websocket_handler) # /ws是WebSocket路径,亦可为其他路径 web.run_app(app, port=8080)
When the WebSocket connection is opened, the websocket_handler function will automatically run and continue to listen for messages from the client. When a new image is received, the Base64 encoding is parsed and processed using OpenCV. After the data is processed, the results are returned to the client.
So far, we have successfully implemented an online face recognition system. The complete client and server side code looks like this:
Client:
<html> <head> <meta charset="UTF-8"> <title>人脸识别</title> </head> <body> <h1 id="人脸识别">人脸识别</h1> <video width="320" height="240" autoplay></video> <canvas id="canvas" width="320" height="240"></canvas> <script> let socket = new WebSocket("ws://localhost:8080/"); socket.onopen = function() { console.log("WebSocket连接已打开"); }; socket.onmessage = function(event) { console.log(event.data); }; let video = document.querySelector('video'); navigator.mediaDevices.getUserMedia({video: true}) .then(function (stream) { video.srcObject = stream; }); let canvas = document.getElementById('canvas'); let context = canvas.getContext('2d'); setInterval(function() { context.drawImage(video, 0, 0, canvas.width, canvas.height); let dataUrl = canvas.toDataURL('image/jpeg', 1.0); socket.send(dataUrl); }, 500); </script> </body> </html>
Server side:
import asyncio import cv2 import base64 import io from aiohttp import web async def index(request): return web.Response(text="WebSocket服务器已启动!") async def websocket_handler(request): ws = web.WebSocketResponse() await ws.prepare(request) while True: data = await ws.receive() if data.type == web.WSMsgType.TEXT: await ws.send_str("接收到了一张新的图像,请稍候……") img_data = data.data[23:] # 截取“data:image/jpeg;base64,”之后的数据 try: img_bytes = base64.b64decode(img_data) img_stream = io.BytesIO(img_bytes) img_np = cv2.imdecode(np.frombuffer(img_stream.read(), np.uint8), cv2.IMREAD_UNCHANGED) # 图像识别代码 # ... # 向客户端发送识别结果 await ws.send_str("这是一个人脸。") except: await ws.send_str("出错了,无法处理该图像。") elif data.type == web.WSMsgType.ERROR: print("WebSocket连接发生错误! Code:{}".format(ws.exception())) break return ws app = web.Application() app.router.add_get('/', index) app.router.add_get('/ws', websocket_handler) web.run_app(app, port=8080)
I hope this article can help you understand how to use WebSocket and JavaScript implements an online face recognition system and quickly builds a feasible system.
The above is the detailed content of How to implement an online face recognition system using WebSocket and JavaScript. For more information, please follow other related articles on the PHP Chinese website!

Introduction I know you may find it strange, what exactly does JavaScript, C and browser have to do? They seem to be unrelated, but in fact, they play a very important role in modern web development. Today we will discuss the close connection between these three. Through this article, you will learn how JavaScript runs in the browser, the role of C in the browser engine, and how they work together to drive rendering and interaction of web pages. We all know the relationship between JavaScript and browser. JavaScript is the core language of front-end development. It runs directly in the browser, making web pages vivid and interesting. Have you ever wondered why JavaScr

Node.js excels at efficient I/O, largely thanks to streams. Streams process data incrementally, avoiding memory overload—ideal for large files, network tasks, and real-time applications. Combining streams with TypeScript's type safety creates a powe

The differences in performance and efficiency between Python and JavaScript are mainly reflected in: 1) As an interpreted language, Python runs slowly but has high development efficiency and is suitable for rapid prototype development; 2) JavaScript is limited to single thread in the browser, but multi-threading and asynchronous I/O can be used to improve performance in Node.js, and both have advantages in actual projects.

JavaScript originated in 1995 and was created by Brandon Ike, and realized the language into C. 1.C language provides high performance and system-level programming capabilities for JavaScript. 2. JavaScript's memory management and performance optimization rely on C language. 3. The cross-platform feature of C language helps JavaScript run efficiently on different operating systems.

JavaScript runs in browsers and Node.js environments and relies on the JavaScript engine to parse and execute code. 1) Generate abstract syntax tree (AST) in the parsing stage; 2) convert AST into bytecode or machine code in the compilation stage; 3) execute the compiled code in the execution stage.

The future trends of Python and JavaScript include: 1. Python will consolidate its position in the fields of scientific computing and AI, 2. JavaScript will promote the development of web technology, 3. Cross-platform development will become a hot topic, and 4. Performance optimization will be the focus. Both will continue to expand application scenarios in their respective fields and make more breakthroughs in performance.

Both Python and JavaScript's choices in development environments are important. 1) Python's development environment includes PyCharm, JupyterNotebook and Anaconda, which are suitable for data science and rapid prototyping. 2) The development environment of JavaScript includes Node.js, VSCode and Webpack, which are suitable for front-end and back-end development. Choosing the right tools according to project needs can improve development efficiency and project success rate.

Yes, the engine core of JavaScript is written in C. 1) The C language provides efficient performance and underlying control, which is suitable for the development of JavaScript engine. 2) Taking the V8 engine as an example, its core is written in C, combining the efficiency and object-oriented characteristics of C. 3) The working principle of the JavaScript engine includes parsing, compiling and execution, and the C language plays a key role in these processes.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

WebStorm Mac version
Useful JavaScript development tools

Dreamweaver Mac version
Visual web development tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function
