


Golang WebSocket Programming Guide: Building high-performance real-time applications
Golang WebSocket Programming Guide: Building high-performance real-time applications
Introduction:
With the rapid development of the Internet, the need for real-time communication is becoming more and more urgent. As a two-way communication protocol, WebSocket can establish a persistent connection between the browser and the server, providing an efficient and reliable solution for real-time applications. This article will introduce how to use Golang to build high-performance real-time applications and give specific code examples.
1. What is the WebSocket protocol?
The WebSocket protocol is a TCP-based protocol that establishes a persistent full-duplex connection between the browser and the server, allowing the server to actively communicate with the browser. Push data to achieve real-time communication. Compared with the traditional HTTP protocol, the WebSocket protocol has the following advantages:
- Compared with the HTTP protocol, the handshake process of the WebSocket protocol is simpler, reducing the delay in connection establishment.
- The WebSocket protocol can transmit data in both directions within a connection, reducing the overhead of transmitting data.
- WebSocket protocol supports cross-domain communication and can establish connections under different domain names to realize data sharing and exchange.
2. WebSocket Programming in Golang
As a high-performance programming language, Golang provides a convenient and easy-to-use standard library to handle WebSocket communication. The following is a sample code for a simple WebSocket server:
package main import ( "log" "net/http" "github.com/gorilla/websocket" ) var upgrader = websocket.Upgrader{ CheckOrigin: func(r *http.Request) bool { return true }, } func main() { http.HandleFunc("/echo", echoHandler) log.Fatal(http.ListenAndServe(":8080", nil)) } func echoHandler(w http.ResponseWriter, r *http.Request) { conn, err := upgrader.Upgrade(w, r, nil) if err != nil { log.Fatal("upgrade error:", err) } defer conn.Close() for { messageType, message, err := conn.ReadMessage() if err != nil { log.Println("read error:", err) break } log.Println("receive:", string(message)) err = conn.WriteMessage(messageType, message) if err != nil { log.Println("write error:", err) break } } }
In the above code, the WebSocket request is mapped to # through the http.HandleFunc
function and the route /echo
##echoHandlerFunction. In the
echoHandler function, we use
websocket.Upgrader to upgrade the HTTP connection to a WebSocket connection and get a
websocket.Conn instance. Implemented a simple WebSocket Echo server by reading messages from
conn and writing the same messages.
The above example only implements a simple message echo function. Below, we will show how to use Golang to build a real-time chat room where multiple users can communicate in real-time at the same time.
package main import ( "log" "net/http" "github.com/gorilla/websocket" ) var upgrader = websocket.Upgrader{ CheckOrigin: func(r *http.Request) bool { return true }, } type Message struct { Username string `json:"username"` Content string `json:"content"` } type Room struct { clients map[*websocket.Conn]bool broadcast chan Message join chan *websocket.Conn leave chan *websocket.Conn } func (r *Room) start() { for { select { case conn := <-r.join: r.clients[conn] = true case conn := <-r.leave: delete(r.clients, conn) close(conn) case message := <-r.broadcast: for conn := range r.clients { err := conn.WriteJSON(message) if err != nil { log.Println("write error:", err) delete(r.clients, conn) close(conn) } } } } } func main() { r := Room{ clients: make(map[*websocket.Conn]bool), broadcast: make(chan Message), join: make(chan *websocket.Conn), leave: make(chan *websocket.Conn), } go r.start() http.HandleFunc("/ws", func(w http.ResponseWriter, r *http.Request) { conn, err := upgrader.Upgrade(w, r, nil) if err != nil { log.Fatal("upgrade error:", err) } r.join <- conn defer func() { r.leave <- conn }() for { var message Message err = conn.ReadJSON(&message) if err != nil { log.Println("read error:", err) break } r.broadcast <- message } }) log.Fatal(http.ListenAndServe(":8080", nil)) }In the above code, we define a
Room type to manage connected clients. The
Room type internally contains
clients to save all connected clients,
broadcast to broadcast messages,
join and
leave is used to handle client connections and disconnections.
main function, we create a
Room instance and start
Room# through go r.start()
##Instance message processing coroutine. Map WebSocket requests to anonymous functions through the http.HandleFunc
function and route /ws
. In the anonymous function, we join the connection to the join
channel of Room
, and at the end of the function we leave the connection from leave
of Room
removed from the channel. At the same time, we use conn.ReadJSON
and conn.WriteJSON
to read and write messages in JSON format respectively. Conclusion:
The above is the detailed content of Golang WebSocket Programming Guide: Building high-performance real-time applications. For more information, please follow other related articles on the PHP Chinese website!

Golangisidealforbuildingscalablesystemsduetoitsefficiencyandconcurrency,whilePythonexcelsinquickscriptinganddataanalysisduetoitssimplicityandvastecosystem.Golang'sdesignencouragesclean,readablecodeanditsgoroutinesenableefficientconcurrentoperations,t

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Reasons for choosing Golang include: 1) high concurrency performance, 2) static type system, 3) garbage collection mechanism, 4) rich standard libraries and ecosystems, which make it an ideal choice for developing efficient and reliable software.

Golang is suitable for rapid development and concurrent scenarios, and C is suitable for scenarios where extreme performance and low-level control are required. 1) Golang improves performance through garbage collection and concurrency mechanisms, and is suitable for high-concurrency Web service development. 2) C achieves the ultimate performance through manual memory management and compiler optimization, and is suitable for embedded system development.

Golang performs better in compilation time and concurrent processing, while C has more advantages in running speed and memory management. 1.Golang has fast compilation speed and is suitable for rapid development. 2.C runs fast and is suitable for performance-critical applications. 3. Golang is simple and efficient in concurrent processing, suitable for concurrent programming. 4.C Manual memory management provides higher performance, but increases development complexity.

Golang's application in web services and system programming is mainly reflected in its simplicity, efficiency and concurrency. 1) In web services, Golang supports the creation of high-performance web applications and APIs through powerful HTTP libraries and concurrent processing capabilities. 2) In system programming, Golang uses features close to hardware and compatibility with C language to be suitable for operating system development and embedded systems.

Golang and C have their own advantages and disadvantages in performance comparison: 1. Golang is suitable for high concurrency and rapid development, but garbage collection may affect performance; 2.C provides higher performance and hardware control, but has high development complexity. When making a choice, you need to consider project requirements and team skills in a comprehensive way.

Golang is suitable for high-performance and concurrent programming scenarios, while Python is suitable for rapid development and data processing. 1.Golang emphasizes simplicity and efficiency, and is suitable for back-end services and microservices. 2. Python is known for its concise syntax and rich libraries, suitable for data science and machine learning.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Dreamweaver CS6
Visual web development tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Zend Studio 13.0.1
Powerful PHP integrated development environment

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool