


Asynchronous coroutine development skills: realizing high concurrency short link generator
Asynchronous coroutine development skills: short link generator to achieve high concurrency
With the continuous development of the Internet, more and more web pages, applications and electronic Resources such as emails need to be shared and accessed through links. Long links usually cause inconvenience in reading and copying, while short links can solve this problem and make the link more concise.
In order to meet the needs of a large number of users to generate short links at the same time, we need to implement a highly concurrent short link generator. This article will introduce a development technique based on asynchronous coroutines to achieve efficient short link generation.
- Introduction to asynchronous coroutines
Asynchronous coroutines are a concurrent programming technology that can achieve non-blocking concurrent execution in a single thread. Compared with traditional multi-threading or multi-process, asynchronous coroutines have higher execution efficiency and less system overhead. The coroutine programming model in Python mainly relies on the asyncio library.
- Asynchronous HTTP Client
In order to generate a short link, we need to call a short link generation service through an HTTP request. Here, we can use an asynchronous HTTP client to implement highly concurrent HTTP requests.
The following is an asynchronous HTTP client code example implemented using the aiohttp library:
import aiohttp import asyncio async def fetch(session, url): async with session.get(url) as response: return await response.text() async def main(): async with aiohttp.ClientSession() as session: tasks = [] for i in range(10): # 假设需要生成10个短链接 url = 'http://shortlink-service.com/generate' # 短链接生成服务的URL task = asyncio.ensure_future(fetch(session, url)) tasks.append(task) responses = await asyncio.gather(*tasks) print(responses) if __name__ == '__main__': loop = asyncio.get_event_loop() loop.run_until_complete(main())
In the above code, we define a fetch function to send an HTTP GET request and return the response content. In the main function, we create an asynchronous HTTP client session and use a for loop to create 10 asynchronous tasks. Each task will call the fetch function to send an HTTP request. Finally, we use the asyncio.gather function to wait for all tasks to complete and print out all response contents.
- Short link generator
Now we can combine asynchronous coroutines and asynchronous HTTP clients to implement a high-concurrency short link generator. Suppose we need to generate 1000 short links, the following is a simplified sample code:
import aiohttp import asyncio async def fetch(session, url, long_url): async with session.get(url, params={'long_url': long_url}) as response: return await response.text() async def generate_short_links(long_urls): async with aiohttp.ClientSession() as session: tasks = [] for long_url in long_urls: url = 'http://shortlink-service.com/generate' # 短链接生成服务的URL task = asyncio.ensure_future(fetch(session, url, long_url)) tasks.append(task) responses = await asyncio.gather(*tasks) return responses if __name__ == '__main__': long_urls = ['http://example.com'] * 1000 # 假设有1000个长链接 loop = asyncio.get_event_loop() short_links = loop.run_until_complete(generate_short_links(long_urls)) print(short_links)
In the above code, we define a generate_short_links function to generate short links. This function accepts a long link list as a parameter and then uses an asynchronous HTTP client to send an HTTP GET request to call the short link generation service. Finally, we use the asyncio.gather function to wait for all tasks to complete and return all response content.
Through the above code example, we have implemented a high-concurrency short link generator. By utilizing asynchronous coroutines and asynchronous HTTP clients, we can generate a large number of short links simultaneously in a single thread, improving the system's concurrency capabilities and response speed.
Summary:
This article introduces a development technique based on asynchronous coroutines to achieve high concurrency short link generator. We use an asynchronous HTTP client to send HTTP requests and use the asyncio library to implement asynchronous coroutines. Through reasonable concurrency design, we can improve the performance and response speed of the system and meet the needs of a large number of users to generate short links at the same time.
The above is the detailed content of Asynchronous coroutine development skills: realizing high concurrency short link generator. For more information, please follow other related articles on the PHP Chinese website!

PHP type prompts to improve code quality and readability. 1) Scalar type tips: Since PHP7.0, basic data types are allowed to be specified in function parameters, such as int, float, etc. 2) Return type prompt: Ensure the consistency of the function return value type. 3) Union type prompt: Since PHP8.0, multiple types are allowed to be specified in function parameters or return values. 4) Nullable type prompt: Allows to include null values and handle functions that may return null values.

In PHP, use the clone keyword to create a copy of the object and customize the cloning behavior through the \_\_clone magic method. 1. Use the clone keyword to make a shallow copy, cloning the object's properties but not the object's properties. 2. The \_\_clone method can deeply copy nested objects to avoid shallow copying problems. 3. Pay attention to avoid circular references and performance problems in cloning, and optimize cloning operations to improve efficiency.

PHP is suitable for web development and content management systems, and Python is suitable for data science, machine learning and automation scripts. 1.PHP performs well in building fast and scalable websites and applications and is commonly used in CMS such as WordPress. 2. Python has performed outstandingly in the fields of data science and machine learning, with rich libraries such as NumPy and TensorFlow.

Key players in HTTP cache headers include Cache-Control, ETag, and Last-Modified. 1.Cache-Control is used to control caching policies. Example: Cache-Control:max-age=3600,public. 2. ETag verifies resource changes through unique identifiers, example: ETag: "686897696a7c876b7e". 3.Last-Modified indicates the resource's last modification time, example: Last-Modified:Wed,21Oct201507:28:00GMT.

In PHP, password_hash and password_verify functions should be used to implement secure password hashing, and MD5 or SHA1 should not be used. 1) password_hash generates a hash containing salt values to enhance security. 2) Password_verify verify password and ensure security by comparing hash values. 3) MD5 and SHA1 are vulnerable and lack salt values, and are not suitable for modern password security.

PHP is a server-side scripting language used for dynamic web development and server-side applications. 1.PHP is an interpreted language that does not require compilation and is suitable for rapid development. 2. PHP code is embedded in HTML, making it easy to develop web pages. 3. PHP processes server-side logic, generates HTML output, and supports user interaction and data processing. 4. PHP can interact with the database, process form submission, and execute server-side tasks.

PHP has shaped the network over the past few decades and will continue to play an important role in web development. 1) PHP originated in 1994 and has become the first choice for developers due to its ease of use and seamless integration with MySQL. 2) Its core functions include generating dynamic content and integrating with the database, allowing the website to be updated in real time and displayed in personalized manner. 3) The wide application and ecosystem of PHP have driven its long-term impact, but it also faces version updates and security challenges. 4) Performance improvements in recent years, such as the release of PHP7, enable it to compete with modern languages. 5) In the future, PHP needs to deal with new challenges such as containerization and microservices, but its flexibility and active community make it adaptable.

The core benefits of PHP include ease of learning, strong web development support, rich libraries and frameworks, high performance and scalability, cross-platform compatibility, and cost-effectiveness. 1) Easy to learn and use, suitable for beginners; 2) Good integration with web servers and supports multiple databases; 3) Have powerful frameworks such as Laravel; 4) High performance can be achieved through optimization; 5) Support multiple operating systems; 6) Open source to reduce development costs.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

SublimeText3 Chinese version
Chinese version, very easy to use

SublimeText3 Linux new version
SublimeText3 Linux latest version

Zend Studio 13.0.1
Powerful PHP integrated development environment