search
HomeTechnology peripheralsAIExplore horizontal scaling with MongoDB: building efficient large-scale data storage solutions

MongoDB is a NoSQL database that is ideal for building large-scale data storage solutions. It scales horizontally to cope with growing data volume and load requirements. The following will introduce the horizontal expansion mechanism of MongoDB in detail, and explore how to use MongoDB to build high-performance, scalable large-scale data storage solutions.

Horizontal expansion refers to distributing data on multiple nodes to achieve data sharding and load balancing, thereby improving system performance and capacity. In MongoDB, horizontal expansion is achieved by using the sharding function

1. The basic principles of MongoDB sharding

1. Shard Key: Shard Key refers to a field used to split data into different fragments. Choosing an appropriate shard key can ensure that data is evenly distributed among various fragments and avoid data hotspots and load imbalance issues

2. Shard Cluster: Shard Cluster It consists of multiple shard nodes and one or more configuration servers (Config Server). Each shard node is responsible for storing a portion of the data in the sharded cluster.

3. Routing and load balancing: The client will interact with the sharded cluster through the router. The router will route the query to the corresponding shard node based on the shard key in the query. In addition, the load balancing mechanism can also ensure load balancing among various shard nodes to improve system performance and capacity

2. Steps to build a large-scale data storage solution

1. Design the sharding key: Choose the appropriate sharding key based on business needs and data characteristics. Sharding keys should be evenly distributed to avoid data skew and hotspot issues.

The content that needs to be rewritten is: 2. Deploy sharding cluster: configure and start the configuration server and sharding nodes. Configure the server to store the metadata of the sharded cluster, and the sharded nodes are used to store data

3. Initialize the sharded cluster: split the data into multiple fragments and distribute the fragments on different shard nodes. Use the mongos command line tool to initialize the sharded cluster and add sharded nodes.

4. Monitoring and management: Use the tools and functions provided by MongoDB, such as MongoDB Ops Manager and MongoDB Cloud Manager, to monitor the status, performance and health of the sharded cluster. Identify and resolve problems promptly.

5. Data migration: If data already exists, data migration operation is required. MongoDB provides tools and commands, such as mongodump and mongorestore, for migrating data from existing deployments into sharded clusters.

6. Query and data access: The client interacts with the sharded cluster through the router. Use the correct shard key in queries to ensure the query is routed to the correct shard node.

When the amount of data grows or the load demand becomes larger, the capacity and performance of the system can be expanded by adding more shard nodes. The sharded cluster can automatically balance the load to ensure load balancing among each sharded node

3. Precautions and FAQ

Required The rewritten content is: 1. Sharding key design: Choosing an appropriate sharding key is very important. The sharding key should be selected based on specific business needs and data characteristics to avoid selecting a single hotspot data as the sharding key, which may lead to load imbalance

2. Sharded cluster deployment: The number and location of nodes in a sharded cluster need to be deployed appropriately. While considering network connection and latency issues, ensure stable communication and data replication between shard nodes

3. Monitoring and management: Regularly monitor the status, performance and performance of the sharded cluster. Health status. Discover and solve potential problems in a timely manner, such as load imbalance, data skew, etc.

4. Data migration: Data migration is a complex and time-consuming process. Before data migration, careful planning and testing are required to ensure the accuracy and completeness of the data migration.

5. Data consistency: In a sharded cluster, data replication and synchronization are performed asynchronously. It is necessary to pay attention to the delay and synchronization issues of data replication to ensure the consistency of data during query

Through horizontal expansion, MongoDB can build high-performance, scalable large-scale data storage solutions. Proper design and selection of shard keys, deployment and management of shard clusters, and handling of precautions and common problems are all key to building large-scale data storage solutions. Using the tools and functions provided by MongoDB, you can better monitor and manage sharded clusters to ensure system performance, availability, and scalability. In actual applications, these steps and precautions need to be flexibly applied according to specific needs and environments to build a large-scale data storage solution that meets business needs

The above is the detailed content of Explore horizontal scaling with MongoDB: building efficient large-scale data storage solutions. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
解读CRISP-ML(Q):机器学习生命周期流程解读CRISP-ML(Q):机器学习生命周期流程Apr 08, 2023 pm 01:21 PM

译者 | 布加迪审校 | 孙淑娟目前,没有用于构建和管理机器学习(ML)应用程序的标准实践。机器学习项目组织得不好,缺乏可重复性,而且从长远来看容易彻底失败。因此,我们需要一套流程来帮助自己在整个机器学习生命周期中保持质量、可持续性、稳健性和成本管理。图1. 机器学习开发生命周期流程使用质量保证方法开发机器学习应用程序的跨行业标准流程(CRISP-ML(Q))是CRISP-DM的升级版,以确保机器学习产品的质量。CRISP-ML(Q)有六个单独的阶段:1. 业务和数据理解2. 数据准备3. 模型

人工智能的环境成本和承诺人工智能的环境成本和承诺Apr 08, 2023 pm 04:31 PM

人工智能(AI)在流行文化和政治分析中经常以两种极端的形式出现。它要么代表着人类智慧与科技实力相结合的未来主义乌托邦的关键,要么是迈向反乌托邦式机器崛起的第一步。学者、企业家、甚至活动家在应用人工智能应对气候变化时都采用了同样的二元思维。科技行业对人工智能在创建一个新的技术乌托邦中所扮演的角色的单一关注,掩盖了人工智能可能加剧环境退化的方式,通常是直接伤害边缘人群的方式。为了在应对气候变化的过程中充分利用人工智能技术,同时承认其大量消耗能源,引领人工智能潮流的科技公司需要探索人工智能对环境影响的

找不到中文语音预训练模型?中文版 Wav2vec 2.0和HuBERT来了找不到中文语音预训练模型?中文版 Wav2vec 2.0和HuBERT来了Apr 08, 2023 pm 06:21 PM

Wav2vec 2.0 [1],HuBERT [2] 和 WavLM [3] 等语音预训练模型,通过在多达上万小时的无标注语音数据(如 Libri-light )上的自监督学习,显著提升了自动语音识别(Automatic Speech Recognition, ASR),语音合成(Text-to-speech, TTS)和语音转换(Voice Conversation,VC)等语音下游任务的性能。然而这些模型都没有公开的中文版本,不便于应用在中文语音研究场景。 WenetSpeech [4] 是

条形统计图用什么呈现数据条形统计图用什么呈现数据Jan 20, 2021 pm 03:31 PM

条形统计图用“直条”呈现数据。条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按一定的顺序排列起来;从条形统计图中很容易看出各种数量的多少。条形统计图分为:单式条形统计图和复式条形统计图,前者只表示1个项目的数据,后者可以同时表示多个项目的数据。

自动驾驶车道线检测分类的虚拟-真实域适应方法自动驾驶车道线检测分类的虚拟-真实域适应方法Apr 08, 2023 pm 02:31 PM

arXiv论文“Sim-to-Real Domain Adaptation for Lane Detection and Classification in Autonomous Driving“,2022年5月,加拿大滑铁卢大学的工作。虽然自主驾驶的监督检测和分类框架需要大型标注数据集,但光照真实模拟环境生成的合成数据推动的无监督域适应(UDA,Unsupervised Domain Adaptation)方法则是低成本、耗时更少的解决方案。本文提出对抗性鉴别和生成(adversarial d

数据通信中的信道传输速率单位是bps,它表示什么数据通信中的信道传输速率单位是bps,它表示什么Jan 18, 2021 pm 02:58 PM

数据通信中的信道传输速率单位是bps,它表示“位/秒”或“比特/秒”,即数据传输速率在数值上等于每秒钟传输构成数据代码的二进制比特数,也称“比特率”。比特率表示单位时间内传送比特的数目,用于衡量数字信息的传送速度;根据每帧图像存储时所占的比特数和传输比特率,可以计算数字图像信息传输的速度。

数据分析方法有哪几种数据分析方法有哪几种Dec 15, 2020 am 09:48 AM

数据分析方法有4种,分别是:1、趋势分析,趋势分析一般用于核心指标的长期跟踪;2、象限分析,可依据数据的不同,将各个比较主体划分到四个象限中;3、对比分析,分为横向对比和纵向对比;4、交叉分析,主要作用就是从多个维度细分数据。

聊一聊Python 实现数据的序列化操作聊一聊Python 实现数据的序列化操作Apr 12, 2023 am 09:31 AM

​在日常开发中,对数据进行序列化和反序列化是常见的数据操作,Python提供了两个模块方便开发者实现数据的序列化操作,即 json 模块和 pickle 模块。这两个模块主要区别如下:json 是一个文本序列化格式,而 pickle 是一个二进制序列化格式;json 是我们可以直观阅读的,而 pickle 不可以;json 是可互操作的,在 Python 系统之外广泛使用,而 pickle 则是 Python 专用的;默认情况下,json 只能表示 Python 内置类型的子集,不能表示自定义的

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft