


SDXL Turbo and LCM bring the era of real-time generation of AI drawings: as fast as typing, images are presented instantly
Stability AI launched a new generation of image synthesis model - Stable Diffusion XL Turbo on Tuesday, which has aroused enthusiastic response. Many people say that using this model for image-to-text generation has never been easier
Enter your ideas in the input box and SDXL Turbo will respond quickly and generate the corresponding content without having to Other operations. No matter you input more or less content, it will not affect its speed.
You can use the Some images are created more precisely. Just take a piece of white paper and tell SDXL Turbo that you want a white cat. Before you finish typing, the little white cat will already appear in your hands
The speed of the SDXL Turbo model has reached an almost "real-time" level, which makes people wonder: whether the image generation model can be used for other purposes
Someone directly connected to the game and got a 2fps style transfer screen:
##According to the official blog, on the A100, SDXL Turbo can Generates 512x512 image in 207 ms (on-the-fly encoding single denoising step decoding, fp16), of which a single UNet forward evaluation takes 67 ms.
In this way, we can judge that Vincent Tu has entered the "real-time" era.
Such "instant generation" efficiency looks somewhat similar to the Tsinghua LCM model that became popular not long ago, but the technical content behind them is different. Stability detailed the inner workings of the model in a research paper released at the same time. The research focuses on a technology called Adversarial Diffusion Distillation (ADD). One of the claimed advantages of SDXL Turbo is its similarity to generative adversarial networks (GANs), particularly in generating single-step image outputs.
Paper details
Simply put, adversarial diffusion distillation is a general method that reduces the number of inference steps of a pre-trained diffusion model to 1- 4 sampling steps while maintaining high sampling fidelity and potentially further improving the overall performance of the model.
To this end, the researchers introduced a combination of two training objectives: (i) adversarial loss and (ii) distillation loss corresponding to SDS. The adversarial loss forces the model to directly generate samples that lie on the real image manifold on each forward pass, avoiding blurring and other artifacts common in other distillation methods. The distillation loss uses another pretrained (and fixed) diffusion model as the teacher, effectively leveraging its extensive knowledge and retaining the strong compositionality observed in large diffusion models. During the inference process, the researchers did not use classifier-free guidance, further reducing memory requirements. They retain the model's ability to improve results through iterative refinement, an advantage over previous single-step GAN-based approaches.
The training steps are shown in Figure 2:
Next is a comparison with other SOTA models. Here the researchers did not use automated indicators, but chose a more reliable user preference evaluation method. The goal was to evaluate prompt compliance and overall image. To compare multiple different model variants (StyleGAN-T, OpenMUSE, IF-XL, SDXL and LCM-XL), the experiment uses the same prompt to generate the output. In blind tests, the SDXL Turbo beat the LCM-XL's 4-step configuration in a single step, and beat the SDXL's 50-step configuration in just 4 steps. From these results, it can be seen that SDXL Turbo outperforms state-of-the-art multi-step models while significantly reducing computational requirements without sacrificing image quality Presented here is a visual chart of the ELO score regarding inference speed at In Table 2, different few-step sampling and distillation methods using the same base model are compared. The results show that the ADD method outperforms all other methods, including the 8-step standard DPM solver as a quantitative In addition to the experimental results, the paper also shows some qualitative experimental results, demonstrating the improvement capabilities of ADD-XL based on the initial sample. Figure 3 compares ADD-XL (1 step) with the current best baseline in few-step schemes. Figure 4 describes the iterative sampling process of ADD-XL. Figure 8 provides a direct comparison of ADD-XL with its teacher model SDXL-Base. As user studies show, ADD-XL outperforms the teacher model in both quality and prompt alignment. #For more research details, please refer to the original paper#
The above is the detailed content of SDXL Turbo and LCM bring the era of real-time generation of AI drawings: as fast as typing, images are presented instantly. For more information, please follow other related articles on the PHP Chinese website!

Large language models (LLMs) have surged in popularity, with the tool-calling feature dramatically expanding their capabilities beyond simple text generation. Now, LLMs can handle complex automation tasks such as dynamic UI creation and autonomous a

Can a video game ease anxiety, build focus, or support a child with ADHD? As healthcare challenges surge globally — especially among youth — innovators are turning to an unlikely tool: video games. Now one of the world’s largest entertainment indus

“History has shown that while technological progress drives economic growth, it does not on its own ensure equitable income distribution or promote inclusive human development,” writes Rebeca Grynspan, Secretary-General of UNCTAD, in the preamble.

Easy-peasy, use generative AI as your negotiation tutor and sparring partner. Let’s talk about it. This analysis of an innovative AI breakthrough is part of my ongoing Forbes column coverage on the latest in AI, including identifying and explaining

The TED2025 Conference, held in Vancouver, wrapped its 36th edition yesterday, April 11. It featured 80 speakers from more than 60 countries, including Sam Altman, Eric Schmidt, and Palmer Luckey. TED’s theme, “humanity reimagined,” was tailor made

Joseph Stiglitz is renowned economist and recipient of the Nobel Prize in Economics in 2001. Stiglitz posits that AI can worsen existing inequalities and consolidated power in the hands of a few dominant corporations, ultimately undermining economic

Graph Databases: Revolutionizing Data Management Through Relationships As data expands and its characteristics evolve across various fields, graph databases are emerging as transformative solutions for managing interconnected data. Unlike traditional

Large Language Model (LLM) Routing: Optimizing Performance Through Intelligent Task Distribution The rapidly evolving landscape of LLMs presents a diverse range of models, each with unique strengths and weaknesses. Some excel at creative content gen


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment