


The ACM Gordon Bell Prize was established in 1987 and awarded by the American Computer Society. It is known as the "Nobel Prize" in the supercomputing world. The award is given annually to recognize outstanding achievements in high-performance computing. The $10,000 prize is awarded to Gordon Bell, a pioneer in high-performance and parallel computing.
Recently, at the Global Supercomputing Conference SC23, the 2023 ACM Gordon Bell Award was awarded to an 8-member international team of American and Indian researchers who achieved large-scale quantum precision material simulation. The related project is titled "Large-scale materials modeling with quantum precision: ab initio simulations of quasicrystals and interaction-propagating defects in metal alloys."
Team members come from diverse backgrounds and come from the University of Michigan, Oak Ridge National Laboratory and the Indian Institute of Science (Bangalore)
Award-winning team member.
In 2021, a Chinese supercomputing application team consisting of 14 members won the Gordon Bell Award. The team members come from Zhijiang Laboratory, National Supercomputing Wuxi Center, Tsinghua University and Shanghai Quantum Science Research Center. The team won the award in recognition of their use of my country's new generation Sunway supercomputer to conduct "ultra-large-scale quantum random circuit real-time simulation." Previously, the team won the Gordon Bell Award for two consecutive years in 2016 and 2017
Research Overview
We know that molecular dynamics Science is the process of using computer simulations to better understand the movement of atoms and molecules within systems. Ab initio (Latin, ab initio) is a branch of molecular dynamics that has proven particularly useful for important problems in physics and chemistry, including better understanding of microscopic mechanisms, gaining new insights in materials science, and proving experiments Data etc.
Please click the following link to view the paper: https://dl.acm.org/doi/pdf/10.1145/3581784.3627037
The research, led by Vikram Gavini, a professor of mechanical engineering and materials science and engineering at the University of Michigan, used the Frontier (1.14 exaflop HPE Cray EX supercomputer) at the U.S. Department of Energy's Oak Ridge National Laboratory, using the Schrödinger equation. Simulations are performed using first principles methods. The equation describes the probabilistic properties of microscopic systems, and the findings can be used to design candidate materials for new alloys and advance other computational design efforts such as drug discovery.
Gavini's team worked at Frontier and Summit Super An integrated computing framework was used on the computer to simulate dislocations, or defects, in a magnesium system composed of nearly 75,000 atoms. Magnesium alloys are promising candidates as lightweight alloys, but vacancy dislocations within them can lead to brittleness and cracking problems. Understanding dislocations in magnesium alloys could lead to lighter, more flexible alloys for industry
##Comparison of this article with previous work.
The team is using the Perlmutter supercomputer at the National Energy Research Scientific Computing Center to study the stability of quasicrystals in ytterbium-cadmium alloys
The calculations were based on density functional theory, a quantum mechanical method for calculating the atomic and electronic structure of materials, and used machine learning to approach the level of accuracy of quantum many-body calculations. They used Frontier's 8,000 nodes with a maximum computing power of 659.7 petaflops
"As we strive to achieve greater accuracy, the number of available computing systems has dropped dramatically," Gavini express. "We use the results of quantum many-body calculations on smaller systems and use machine learning to infer universal constitutive relations for electrons, which can be used in larger density functional theory calculations. Combining these methods, we are able to use tools like Frontier The advantage of such a large machine is that it is close to quantum precision." Material simulation at scale.
This study is the latest milestone in a decade of work by the Frontier team. A previous study in 2019 used Summit to simulate more than 10,000 magnesium atoms and was also nominated for the Gordon Bell Prize.
The alloy production process involves the melting and mixing of metals. Defects formed during solidification may aid or harm material properties. The atomic structure of the material plays a crucial role in the behavior of these line defects, often called dislocations.
Aluminum is a malleable metal that can accommodate dislocation and movement thanks to its atomic structure. The atomic structure of magnesium cannot easily accommodate dislocations, making it more fragile. Gavini said: "Under the right circumstances, these defects can create unprecedented properties. Why? What generates these defects? How can we exploit these defects to achieve desirable rather than undesirable properties? In previous research, we explored the energy of individual dislocations in bulk magnesium. In this study, we investigate the The result is the most detailed image yet of this structure, with near-quantum precision. Gavini hopes to apply these methods to a wide range of studies.
"If we can perform these large-scale calculations with near-quantum precision, it means we can design better materials through computational design, explore compounds for drug discovery, and understand nanoparticles at a new level. and the details of the properties of the material system,” Gavini said. "Without exascale computing and Frontier, we wouldn't be able to do these types of calculations. Now that we know how to do it, we can apply these methods broadly to explore other problems."According to the research team, this method can be widely used in many scientific fields and answer some challenging questions that have existed for decades, from aerospace to medicine.
The above is the detailed content of 2023 Gordon Bell Prize Announced: Frontier Supercomputer's 'Quantum Level Accuracy” Materials Simulation Winner. For more information, please follow other related articles on the PHP Chinese website!

本站1月30日消息,意大利能源巨头Eni埃尼集团近日宣布将建设全新的HPC6超级计算机。该超算将基于AMDEPYCCPU和InstinctMI250XGPU打造,完成后理论峰值算力将达600PFlop/s,持续峰值算力也将有400PFlop/s,可在现有Top500榜单中排到第五。经查询得知,埃尼集团是世界传统大型石油公司之一,同时也是意大利最大的三家企业之一。据了解,该公司由意大利政府持股约30%。▲上一代HPC5超算照片。图源埃尼集团官网埃尼集团现有2座超算进入了Top500超算榜单:之前的

时隔四个月,ByteDanceResearch与北京大学物理学院陈基课题组又一合作工作登上国际顶级刊物NatureCommunications:论文《TowardsthegroundstateofmoleculesviadiffusionMonteCarloonneuralnetworks》将神经网络与扩散蒙特卡洛方法结合,大幅提升神经网络方法在量子化学相关任务上的计算精度、效率以及体系规模,成为最新SOTA。论文链接:https://www.nature.com

6 月 23 日,澳大利亚量子计算公司 SQC(Silicon Quantum Computing)宣布推出世界上第一个量子集成电路。这是一个包含经典计算机芯片上所有基本组件的电路,但体量是在量子尺度上。SQC 团队使用这种量子处理器准确地模拟了一个有机聚乙炔分子的量子态——最终证明了新量子系统建模技术的有效性。「这是一个重大突破,」SQC 创始人 Michelle Simmons 说道。由于原子之间可能存在大量相互作用,如今的经典计算机甚至难以模拟相对较小的分子。SQC 原子级电路技术的开发将

本站6月26日消息,全球最强超级计算机所配备的超强GPU数量不到5万片,而AMD公司为了增强和英伟达的竞争力,目标推出支持120万片GPU的超级数据中心AI集群。在接受TheNextPlatform采访时,AMD数据中心解决方案集团执行副总裁兼总经理Forrest Norrod表示,公司正在认真考虑构建最大规模的人工智能GPU集群。本站注:人工智能训练集群通常由数千片GPU构建,通过高速互连连接服务器机架,而AMD正研究的120万片无疑在数量级上指数倍增长,这必然带来延迟、功耗、硬件故障等多方面

量子计算可谓是目前最令人兴奋(和被炒作)的研究领域之一。 在这方面,德国和澳大利亚的初创公司Quantum Brilliance最近干了件大事。 世界上第一台基于金刚石的室温量子计算机在遥远的大洋洲成功安装! 世界第一台商用室温量子计算机简单来说,Quantum Brilliance的这台量子计算机,既不需要绝对零度,也不需要复杂的激光系统。 那么,为什么说室温是一件值得拿出来好好说道说道的事情呢? 量子计算系统的基本思想是,量子比特能够处于一种不仅仅是「1」或「0」的状态,而是某种称为「叠加

量子纠缠(quantumentanglement)是指粒子之间发生的一种特殊耦合现象。在纠缠态下,我们无法单独描述各个粒子的性质,只能描述整体系统的性质的现象,这种影响不随距离的改变而消失,哪怕粒子之间相隔整个宇宙也不会变。一项新的研究表明,使用量子纠缠机制,传感器可以在检测运动时更加准确且更快。科学家们认为,这些发现可能有助于发展不依赖GPS的导航系统。在美国亚利桑那大学等机构在《NaturePhotonics》提交的一项新研究中,研究人员对光机械传感器(optomechanicalsenso

本站4月25日消息,英伟达公司近日宣布和日本产业技术综合研究所(AIST)合作,搭建名为“ABCI-Q”的超级计算机,将整合传统超级计算机和量子计算机打造出混合云系统。由于英伟达表达单独运行量子计算器仍然会犯很多错误,因此超级计算机必须帮助解决错误,让复杂的运算变得更加顺畅。ABCI-Q+%执行高速、复杂计算的能力将有助于人工智能、能源和生物技术领域的研究和企业应用,例如提高新药开发和物流的效率率。该网站从报道中获悉,ABCI-Q+内置超过2000片英伟达H100TensorCoreGPU,并通

戈登贝尔奖(ACMGordonBellPrize)设立于1987年,由美国计算机学会颁发,被称为超算界的「诺贝尔奖」。该奖项每年颁发一次,用以表彰高性能计算领域取得的杰出成就。奖金1万美元,由高性能和并行计算领域先驱戈登·贝尔提供。近日,在全球超级计算大会SC23上,2023年ACM戈登贝尔奖授予了美国和印度研究人员组成的8人国际团队,他们实现了大规模量子精度的材料模拟。相关项目名称为「量子精度的大规模材料建模:金属合金中准晶体和相互作用扩展缺陷的从头计算模拟」。团队成员的背景各不相同,他们分别


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Atom editor mac version download
The most popular open source editor

Notepad++7.3.1
Easy-to-use and free code editor
