search
HomeTechnology peripheralsAIGoogle Scientist Nature comments: How artificial intelligence can better understand the brain

谷歌科学家 Nature 评论:人工智能如何更好地理解大脑

Compilation | Green Dior

On November 7, 2023, Viren Jain, senior research scientist at Google Research and head of connectomics of the Google team, published in "Nature" A review article titled "How AI could lead to a better understanding of the brain".

谷歌科学家 Nature 评论:人工智能如何更好地理解大脑

Paper link: https://www.nature.com/articles/d41586-023-03426-3

Can computers be programmed to simulate the brain? ? It's a question that mathematicians, theorists and experimentalists have long asked - whether out of a desire to create artificial intelligence (AI) or because its behavior can only be understood if mathematics or computers can reproduce it Complex systems like the brain. To try to answer this question, researchers have been developing simplified models of the brain's neural networks since the 1940s. In fact, today’s explosion of machine learning can be traced back to early work inspired by biological systems.

However, the results of these efforts now allow researchers to ask a slightly different question: Can machine learning be used to build computational models that simulate brain activity?

At the heart of these developments is increasing amounts of brain data. Starting in the 1970s, neuroscientists have been producing connectomes, maps of neuronal connections and morphology that capture static representations of the brain at a given moment, and this research has since intensified. In addition to these advances, researchers have also improved their ability to make functional recordings that can measure changes in neural activity over time at the resolution of single cells. Meanwhile, the field of transcriptomics allows researchers to measure gene activity in tissue samples and even map when and where that activity occurs.

To date, few attempts have been made to connect these different data sources or to collect them simultaneously from the entire brain of the same sample. But as the level of detail, size, and number of data sets increase, especially for the brains of relatively simple model organisms, machine learning systems are making a new approach to brain modeling feasible. This involves training artificial intelligence programs on connectome and other data to reproduce the neural activity you would expect to find in biological systems.

Computational neuroscientists and others need to solve some challenges before they can begin using machine learning to build simulations of the entire brain. However, a hybrid approach that combines information from traditional brain modeling techniques with machine learning systems trained on different data sets can make the entire effort more rigorous and informative.

Brain Mapping

The quest to map the brain began nearly half a century ago with 15 years of painstaking research in the nematode Caenorhabditis elegans. Over the past two decades, developments in automated tissue sectioning and imaging have made anatomical data more accessible to researchers, while advances in computing and automated image analysis have transformed the analysis of these data sets.

Connectomes have now been generated for the entire brain of C. elegans, larval and adult Drosophila melanogaster, and for small portions (one-thousandth and one-millionth, respectively) of mouse and human brains.

The anatomy diagrams produced so far contain major flaws. Imaging methods have not been able to map electrical connections at scale along with chemical synaptic connections. Researchers have focused primarily on neurons, although the non-neuronal glial cells that provide support to neurons appear to play a crucial role in the flow of information in the nervous system. Much is still unknown about the genes expressed and the proteins present in the neurons and other cells that were mapped.

谷歌科学家 Nature 评论:人工智能如何更好地理解大脑

Still, such maps have yielded some insights. In Drosophila melanogaster, for example, connectomics allows researchers to identify the mechanisms behind neural circuits responsible for behaviors such as aggression. The brain map also revealed how fruit flies compute information in the circuits responsible for knowing where they are and how to get from one place to another. In zebrafish (Danio rerio) larvae, connectomics helped reveal the workings of synaptic circuits underlying odor classification, control of eye position and movement, and navigation.

Efforts that could eventually generate the entire mouse brain connectome are underway—although with current methods, this could take a decade or more. The mouse brain is nearly 1,000 times larger than the brain of Drosophila melanogaster, which is composed of about 150,000 neurons.

In addition to all these advances in connectomics, researchers are leveraging single-cell and spatial transcriptomics to capture gene expression patterns with ever-increasing accuracy and specificity. Various techniques also allow researchers to record neural activity from the entire brain of a vertebrate animal for hours at a time. In the case of the larval zebrafish brain, this means recording from nearly 100,000 neurons. These include proteins with fluorescent properties that change in response to changes in voltage or calcium levels, and microscopy techniques that enable 3D imaging of living brains at single-cell resolution. (Recordings of neural activity in this way provide a less accurate picture than electrophysiological recordings, but much better than non-invasive methods such as functional magnetic resonance imaging.)

Mathematics and Physics

When trying to simulate brain activity patterns, scientists mainly use physics-based methods. This requires generating a simulation of a nervous system or parts of a nervous system using a mathematical description of the behavior of real neurons or parts of a real nervous system. It also requires making informed guesses about aspects of the circuit that have not been verified by observation, such as network connectivity.

In some cases, speculation is extensive (see "Mystery Model") but in other ways, anatomical maps at single-cell and single-synapse resolution help researchers refute and generate hypotheses.

Mysterious Model

Due to a lack of data, it is difficult to evaluate whether certain neural network models capture what happens in real systems.

The controversial European Human Brain Project, which ended in September, originally aimed to computationally simulate the entire human brain. Although that goal was abandoned, the project did simulate parts of rodent and human brains, including tens of thousands of neurons in a rodent hippocampus model, based on limited biological measurements and a variety of synthetic data-generating procedures.

A major problem with this approach is that in the absence of detailed anatomical or functional diagrams, it is difficult to assess how accurately the resulting simulation captures what is happening in the biological system.

For about seventy years, neuroscientists have been refining theoretical descriptions of the circuits that enable the calculation of movement in Drosophila melanogaster. Since its completion in 2013, the motion detection circuit connectome, and subsequently the larger flight connectome, has provided detailed circuit diagrams that support some hypotheses about how the circuit works.

However, data collected from real neural networks also highlights the limitations of anatomy-driven approaches.

For example, a neural circuit model completed in the 1990s included a detailed analysis of the connectivity and physiology of the approximately 30 neurons that make up the crab (Cancer borealis) orogastric ganglion (which controls the animal's stomach). structure of movement). By measuring the activity of neurons under various conditions, the researchers found that even for relatively small collections of neurons, seemingly subtle changes, such as the introduction of a neuromodulator (a substance that changes the properties of neurons and synapses), , will also completely change the behavior of the circuit. This suggests that even with connectomes and other rich data sets to guide and constrain hypotheses about neural circuits, today's data may not be detailed enough for modelers to capture what is happening in biological systems.

This is an area where machine learning can provide a way forward.

By optimizing thousands or even billions of parameters guided by connectome and other data, machine learning models can be trained to produce neural network behavior that is consistent with real neural network behavior - using cellular resolution capabilities Record the measurement.

This machine learning model can incorporate information from traditional brain modeling techniques, such as the Hodgkin-Huxley model, which describes action potentials in neurons (across how changes in membrane voltage) are initiated and propagated using optimized parametric connectivity maps, functional activity recordings, or other data sets obtained for the whole brain. Alternatively, machine learning models can contain “black box” architectures that contain little explicitly specified biological knowledge but contain billions or hundreds of billions of parameters, all of which are empirically optimized.

For example, researchers can evaluate such models by comparing predictions of the system's neural activity to recordings of actual biological systems. Crucially, when machine learning programs are given untrained data, they evaluate how the model's predictions compare—as is standard practice when evaluating machine learning systems.

谷歌科学家 Nature 评论:人工智能如何更好地理解大脑

Axonal projections of neurons in the mouse brain. (Source: Adam Glaser, Jayaram Chandrashekar, Karel Svoboda, Allen Institute for Neurodynamics)

This approach will enable more rigorous modeling of brains containing thousands or more neurons. For example, researchers will be able to evaluate whether simpler models that are easier to compute simulate neural networks better than more complex models that provide more detailed biophysical information, and vice versa.

Machine learning is already being used in this way to improve understanding of other extremely complex systems. For example, since the 1950s, weather prediction systems have typically relied on carefully constructed mathematical models of meteorological phenomena, and modern systems are the result of the iterative refinement of such models by hundreds of researchers. However, over the past five years or so, researchers have developed several weather prediction systems that leverage machine learning. For example, these contain fewer assumptions related to how pressure gradients drive changes in wind speed and how wind speed moves moisture through the atmosphere. Instead, millions of parameters are optimized through machine learning to produce simulated weather behavior that is consistent with a database of past weather patterns.

This way of doing things does come with some challenges. Even if a model makes accurate predictions, it's difficult to explain how it does it. Additionally, models often fail to predict scenarios that are not included in their training data. A weather model trained to predict the next few days has difficulty extrapolating forecasts to weeks or months into the future. But in some cases - for forecasting rainfall several hours into the future - machine learning methods have outperformed traditional methods. Machine learning models also have practical advantages. They use simpler underlying code and can be used by scientists with less specialized meteorological knowledge.

For brain modeling, on the one hand, this approach could help fill some of the gaps in current datasets and reduce the need for more detailed measurements of individual biological components, such as individual neurons. On the other hand, as more comprehensive data sets become available, incorporating the data into the model will become simple.

Think Big

In order to realize this idea, some challenges need to be solved.

Machine learning programs are only as good as the data used to train and evaluate them. Therefore, neuroscientists should aim to obtain data sets from the entire brain of a sample—or even the entire body, if this becomes more feasible. Although it is easier to collect data from certain parts of the brain, using machine learning to model highly interconnected systems, such as neural networks, is unlikely to yield useful information if many parts of the system are not present in the underlying data. .

Researchers should also work to obtain anatomical maps of neural connections and functional recordings (and perhaps in the future gene expression maps) from whole brains from the same sample. Currently, either group tends to focus solely on getting one or the other, rather than both.

With only 302 neurons, the C. elegans nervous system may have enough hardwiring to allow researchers to assume that the connectivity map obtained from one sample will be the same for any other sample - although some studies Shows otherwise. But for larger nervous systems, such as those of Drosophila melanogaster and zebrafish larvae, the connectome variation between samples is significant, so brain models should be trained on structural and functional data obtained from the same sample.

Currently, this can only be achieved in two common model organisms. The bodies of C. elegans and zebrafish larvae are transparent, meaning researchers can make functional recordings from the organism's entire brain and pinpoint the activity of individual neurons. Following such recordings, the animals can be killed immediately, embedded in resin and sectioned, and anatomical measurements of neural connections made. In the future, however, researchers could expand the range of organisms for which such combined data acquisition is possible, for example, by developing new non-invasive methods, possibly using ultrasound, to record neural activity at high resolution.

Obtaining such multimodal datasets in the same sample requires extensive collaboration among researchers, investment in large team science, and increased funding agency support for a more comprehensive effort. But there is precedent for this approach, such as the U.S. Intelligence Advanced Research Program Activity's MICrONS project, which obtained functional and anatomical data on 1 cubic millimeter of mouse brain between 2016 and 2021.

谷歌科学家 Nature 评论:人工智能如何更好地理解大脑

In addition to obtaining this data, neuroscientists need to agree on key modeling goals and quantitative metrics to measure progress. Should the goal of the model be to predict the behavior of individual neurons based on past states or the entire brain? Should the activity of a single neuron be the key metric, or should it be the percentage of hundreds of thousands of active neurons? Likewise, what constitutes an accurate representation of neural activity in a biological system? Formal, agreed-upon benchmarks are essential for comparing modeling approaches and tracking progress over time.

Finally, to present brain modeling challenges to diverse communities, including computational neuroscientists and machine learning experts, researchers need to clarify to the broader scientific community which modeling tasks are the highest priority and which metrics should be used to evaluate the performance of the model. WeatherBench, an online platform that provides a framework for evaluating and comparing weather forecast models, provides a useful template.

Complexity of Key Technologies

Some will question—rightly so—whether machine learning approaches to brain modeling are scientifically useful. Could the problem of trying to understand how the brain work simply be replaced by the problem of trying to understand how large artificial networks work?

However, it is encouraging to use similar methods in a branch of neuroscience involved in determining how the brain processes and encodes sensory stimuli, such as sight and smell. Researchers are increasingly using classically modeled neural networks, in which some biological details are specified, combined with machine learning systems. The latter are trained on large visual or audio data sets to reproduce the visual or auditory abilities of the neural system, such as image recognition. The resulting network showed striking similarities to biological networks, but was easier to analyze and interrogate than true neural networks.

For now, perhaps it is enough to ask whether data from current brain atlases and other work can train machine learning models to reproduce neural activity that corresponds to what is seen in biological systems. Here, even failure can be fun - suggesting that mapping research must go deeper.

The above is the detailed content of Google Scientist Nature comments: How artificial intelligence can better understand the brain. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:机器之心. If there is any infringement, please contact admin@php.cn delete
五个时间序列预测的深度学习模型对比总结五个时间序列预测的深度学习模型对比总结May 05, 2023 pm 05:16 PM

MakridakisM-Competitions系列(分别称为M4和M5)分别在2018年和2020年举办(M6也在今年举办了)。对于那些不了解的人来说,m系列得比赛可以被认为是时间序列生态系统的一种现有状态的总结,为当前得预测的理论和实践提供了经验和客观的证据。2018年M4的结果表明,纯粹的“ML”方法在很大程度上胜过传统的统计方法,这在当时是出乎意料的。在两年后的M5[1]中,最的高分是仅具有“ML”方法。并且所有前50名基本上都是基于ML的(大部分是树型模型)。这场比赛看到了LightG

RLHF与AlphaGo核心技术强强联合,UW/Meta让文本生成能力再上新台阶RLHF与AlphaGo核心技术强强联合,UW/Meta让文本生成能力再上新台阶Oct 27, 2023 pm 03:13 PM

在一项最新的研究中,来自UW和Meta的研究者提出了一种新的解码算法,将AlphaGo采用的蒙特卡洛树搜索算法(Monte-CarloTreeSearch,MCTS)应用到经过近端策略优化(ProximalPolicyOptimization,PPO)训练的RLHF语言模型上,大幅提高了模型生成文本的质量。PPO-MCTS算法通过探索与评估若干条候选序列,搜索到更优的解码策略。通过PPO-MCTS生成的文本能更好满足任务要求。论文链接:https://arxiv.org/pdf/2309.150

MIT团队运用机器学习闭环自主分子发现平台,成功发现、合成和描述了303种新分子MIT团队运用机器学习闭环自主分子发现平台,成功发现、合成和描述了303种新分子Jan 04, 2024 pm 05:38 PM

编辑|X传统意义上,发现所需特性的分子过程一直是由手动实验、化学家的直觉以及对机制和第一原理的理解推动的。随着化学家越来越多地使用自动化设备和预测合成算法,自主研究设备越来越接近实现。近日,来自MIT的研究人员开发了由集成机器学习工具驱动的闭环自主分子发现平台,以加速具有所需特性的分子的设计。无需手动实验即可探索化学空间并利用已知的化学结构。在两个案例研究中,该平台尝试了3000多个反应,其中1000多个产生了预测的反应产物,提出、合成并表征了303种未报道的染料样分子。该研究以《Autonom

AI助力脑机接口研究,纽约大学突破性神经语音解码技术,登Nature子刊AI助力脑机接口研究,纽约大学突破性神经语音解码技术,登Nature子刊Apr 17, 2024 am 08:40 AM

作者|陈旭鹏编辑|ScienceAI由于神经系统的缺陷导致的失语会导致严重的生活障碍,它可能会限制人们的职业和社交生活。近年来,深度学习和脑机接口(BCI)技术的飞速发展为开发能够帮助失语者沟通的神经语音假肢提供了可行性。然而,神经信号的语音解码面临挑战。近日,约旦大学VideoLab和FlinkerLab的研究者开发了一个新型的可微分语音合成器,可以利用一个轻型的卷积神经网络将语音编码为一系列可解释的语音参数(例如音高、响度、共振峰频率等),并通过可微分神经网络将这些参数合成为语音。这个合成器

Code Llama代码能力飙升,微调版HumanEval得分超越GPT-4,一天发布Code Llama代码能力飙升,微调版HumanEval得分超越GPT-4,一天发布Aug 26, 2023 pm 09:01 PM

昨天,Meta开源专攻代码生成的基础模型CodeLlama,可免费用于研究以及商用目的。CodeLlama系列模型有三个参数版本,参数量分别为7B、13B和34B。并且支持多种编程语言,包括Python、C++、Java、PHP、Typescript(Javascript)、C#和Bash。Meta提供的CodeLlama版本包括:代码Llama,基础代码模型;代码羊-Python,Python微调版本;代码Llama-Instruct,自然语言指令微调版就其效果来说,CodeLlama的不同版

手机摄影技术让以假乱真的好莱坞级电影特效视频走红手机摄影技术让以假乱真的好莱坞级电影特效视频走红Sep 07, 2023 am 09:41 AM

一个普通人用一台手机就能制作电影特效的时代已经来了。最近,一个名叫Simulon的3D技术公司发布了一系列特效视频,视频中的3D机器人与环境无缝融合,而且光影效果非常自然。呈现这些效果的APP也叫Simulon,它能让使用者通过手机摄像头的实时拍摄,直接渲染出CGI(计算机生成图像)特效,就跟打开美颜相机拍摄一样。在具体操作中,你要先上传一个3D模型(比如图中的机器人)。Simulon会将这个模型放置到你拍摄的现实世界中,并使用准确的照明、阴影和反射效果来渲染它们。整个过程不需要相机解算、HDR

准确率 >98%,基于电子密度的 GPT 用于化学研究,登 Nature 子刊准确率 >98%,基于电子密度的 GPT 用于化学研究,登 Nature 子刊Mar 27, 2024 pm 02:16 PM

编辑|紫罗可合成分子的化学空间是非常广阔的。有效地探索这个领域需要依赖计算筛选技术,比如深度学习,以便快速地发现各种有趣的化合物。将分子结构转换为数字表示形式,并开发相应算法生成新的分子结构是进行化学发现的关键。最近,英国格拉斯哥大学的研究团队提出了一种基于电子密度训练的机器学习模型,用于生成主客体binders。这种模型能够以简化分子线性输入规范(SMILES)格式读取数据,准确率高达98%,从而实现对分子在二维空间的全面描述。通过变分自编码器生成主客体系统的电子密度和静电势的三维表示,然后通

谷歌用大型模型训练机器狗理解模糊指令,激动不已准备去野餐谷歌用大型模型训练机器狗理解模糊指令,激动不已准备去野餐Jan 16, 2024 am 11:24 AM

人类和四足机器人之间简单有效的交互是创造能干的智能助理机器人的途径,其昭示着这样一个未来:技术以超乎我们想象的方式改善我们的生活。对于这样的人类-机器人交互系统,关键是让四足机器人有能力响应自然语言指令。近来大型语言模型(LLM)发展迅速,已经展现出了执行高层规划的潜力。然而,对LLM来说,理解低层指令依然很难,比如关节角度目标或电机扭矩,尤其是对于本身就不稳定、必需高频控制信号的足式机器人。因此,大多数现有工作都会假设已为LLM提供了决定机器人行为的高层API,而这就从根本上限制了系统的表现能

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft