


How to realize the underlying optimization of MySQL: Advanced use and performance analysis of query cache
Abstract:
MySQL is a widely used relational database management system. Its query caching function can effectively improve query performance. This article will introduce the advanced usage and performance analysis of MySQL query cache, including enabling query cache, using query cache instances, causes and solutions of query cache failure, etc., and also gives specific code examples to help readers better understand and practice .
Keywords: MySQL, query cache, optimization, performance analysis, code examples
- Introduction
MySQL's query cache is a very useful feature that can query The results are cached, and the same query can be obtained directly from the cache next time, avoiding the need to execute the actual query statement, thereby improving query performance. However, in actual use, query caching does not always bring performance improvements, so we need to perform some advanced usage and performance analysis work. - Enable query cache
First, we need to ensure that the query cache is enabled. In the MySQL configuration file my.cnf, you can find the following configuration items:
query_cache_type = 1
query_cache_size = 64M
query_cache_limit = 2M
Set query_cache_type to 1 to enable it Query cache, query_cache_size indicates the cache size, query_cache_limit indicates the upper limit of a single query result cache.
After enabling the query cache, you need to restart the MySQL service for the configuration to take effect. In the command line, you can use the following command to restart the MySQL service:
sudo service mysql restart
- Use query cache instance
In the actual query, we can add SQL feature comments to Controls whether query caching is used. Just add the following comment before the query statement:
SELECT /SELECT_WITHOUT_CACHE/ * FROM table;
If you want the query to not go through the query cache, you can use the SELECT_NO_CACHE comment:
SELECT /SELECT_NO_CACHE/ * FROM table;
- Causes and solutions for query cache failure
The performance improvement of query cache is not always what we want. There are some common reasons that lead to query cache failure. Let's analyze them below and give corresponding solutions.
4.1. The data table is modified
The query cache mechanism is based on the data table. If the data table is updated, inserted or deleted, the cache related to the data table will be cleared. . In order to reduce invalid cache clearing and minimize modifications to the data table, you can use some advanced features, such as INSERT DELAYED, HANDLER, etc.
4.2. The data table uses a storage engine that does not support query caching
Some storage engines of MySQL do not support query caching, such as the MEMORY storage engine. Therefore, when designing data tables, try to choose a storage engine that supports query caching, such as InnoDB, MyISAM, etc.
4.3. The query statement is very complex
The query cache is cached based on the query statement. If the query statement is particularly complex, the effect of the query cache will be greatly reduced. Therefore, when designing query statements, try to simplify the query conditions and split them into multiple simple query statements for querying.
4.4. The hit rate of the query cache is low
The hit rate of the query cache indicates the proportion of the number of queries that hit the cache to the number of all queries. If the hit rate of the query cache is very low, the effectiveness of the query cache will be greatly reduced. You can get the current query cache hit rate by checking the MySQL status variable:
SHOW STATUS LIKE 'Qcache_hits';
If the hit rate is low, you can consider increasing the value of query_cache_size and increasing the cache size.
- Performance Analysis
In addition to using MySQL's query cache, we also need to analyze its performance. You can obtain detailed information about slow query statements and perform performance optimization by viewing MySQL's slow query log.
In the MySQL configuration file my.cnf, you can find the following configuration items:
slow_query_log = 1
slow_query_log_file = /var/log/mysql/slow-query.log
long_query_time = 2
Set slow_query_log to 1 to enable the slow query log, slow_query_log_file to indicate the path of the slow query log file, and long_query_time to indicate that queries exceeding this time will be recorded.
After enabling the slow query log, you need to restart the MySQL service for the configuration to take effect. In the command line, you can use the following command to view the slow query log:
sudo tail -f /var/log/mysql/slow-query.log
Conclusion:
MySQL’s query cache is a This is a very useful function. Proper use and optimization can greatly improve query performance. This article introduces the advanced use and performance analysis methods of query cache, including enabling query cache, using query cache instances, causes and solutions of query cache failure, etc., and gives specific code examples to help readers better understand and practice . Through the optimization and performance analysis of MySQL query cache, the stability and response speed of the application can be improved to meet the needs of users.
The above is the detailed content of How to implement MySQL underlying optimization: Advanced use and performance analysis of query cache. For more information, please follow other related articles on the PHP Chinese website!

麒麟8000与骁龙处理器性能分析:细数强弱对比随着智能手机的普及和功能不断增强,处理器作为手机的核心组件也备受关注。目前市场上最为常见且性能出色的处理器品牌之一就是华为的麒麟系列和高通的骁龙系列。本文将围绕麒麟8000和骁龙处理器展开性能分析,探讨两者在各方面的强弱对比。首先,让我们来了解一下麒麟8000处理器。作为华为公司最新推出的旗舰处理器,麒麟8000

性能对比:Go语言与C语言的速度和效率在计算机编程领域,性能一直是开发者们关注的重要指标。在选择编程语言时,开发者通常会关注其速度和效率。Go语言和C语言作为两种流行的编程语言,被广泛用于系统级编程和高性能应用。本文将对比Go语言和C语言在速度和效率方面的表现,并通过具体的代码示例来展示它们之间的差异。首先,我们来看一下Go语言和C语言的概况。Go语言是由G

如何使用PHP扩展Xdebug进行强大的调试和性能分析引言:在开发PHP应用程序的过程中,调试和性能分析是必不可少的环节。而Xdebug是PHP开发者常用的一款强大的调试工具,它提供了一系列高级功能,如断点调试、变量跟踪、性能分析等。本文将介绍如何使用Xdebug进行强大的调试和性能分析,以及一些实用的技巧和注意事项。一、安装Xdebug在开始使用Xdebu

如何进行C++代码的性能分析?在开发C++程序时,性能是一个重要的考量因素。优化代码的性能可以提高程序的运行速度和效率。然而,想要优化代码,首先需要了解它的性能瓶颈在哪里。而要找到性能瓶颈,首先需要进行代码的性能分析。本文将介绍一些常用的C++代码性能分析工具和技术,帮助开发者找到代码中的性能瓶颈,以便进行优化。使用Profiling工具Profiling工

随着互联网技术的飞速发展,JavaScript作为一门广泛使用的前端语言,也越来越受到重视。然而,在处理大量数据或是复杂逻辑的时候,JavaScript的性能就会受到影响。为了解决这个问题,我们需要掌握一些代码优化和性能分析的工具和技巧。本文将为大家介绍一些常用的JavaScript代码优化和性能分析工具以及技巧。一、代码优化避免全局变量:全局变量会占用更多

Java性能分析工具可用于分析和优化Java函数的性能。选择性能分析工具:JVisualVM、VisualVM、JavaFlightRecorder(JFR)等。配置性能分析工具:设置采样率、启用事件。执行函数并收集数据:在启用分析工具后执行函数。分析性能数据:识别CPU使用率、内存使用率、执行时间、热点等瓶颈指标。优化函数:使用优化算法、重构代码、使用缓存等技术提高效率。

JavaQueue队列的性能分析与优化策略摘要:队列(Queue)是在Java中常用的数据结构之一,广泛应用于各种场景中。本文将从性能分析和优化策略两个方面来探讨JavaQueue队列的性能问题,并给出具体的代码示例。引言队列是一种先进先出(FIFO)的数据结构,可用于实现生产者-消费者模式、线程池任务队列等场景。Java提供了多种队列的实现,例如Arr

pprof是Google提供的Go性能分析工具,可用于生成程序运行期间的性能数据。通过启用性能分析(CPU/内存分配)并使用gorun命令生成配置文件,开发人员可以使用pprof工具交互式地分析数据,识别出耗时函数(top命令)和生成更详细的可视化报告(web命令),从而发现优化点。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SublimeText3 English version
Recommended: Win version, supports code prompts!

SublimeText3 Mac version
God-level code editing software (SublimeText3)
