


How to use Docker for container log analysis and exception monitoring
Docker is a popular containerization technology that packages an application and its dependencies into a container to run as a single portable application unit. This technology allows developers to easily deploy and manage applications in different environments. In practical applications, log analysis and exception monitoring of Docker containers are very necessary. This article will introduce how to use Docker for container log analysis and exception monitoring, including the following aspects:
- Docker container log
- Use the Docker log command to view the log
- Use Logstash for log collection and analysis
- Use Elasticsearch for data indexing and storage
- Use Kibana for data visualization display
First we need to know about Docker containers log.
1. Docker container logs
Docker container logs record the operation information in the container, including: application output information, error information, access logs, system logs, etc. This information is very important for application operation and maintenance, tracking, exception handling, etc., so we need to collect and analyze the logs of Docker containers.
2. Use the Docker log command to view the log
Docker provides the log command, which can be used to view the log information output by the container. Using the log command, we can easily view the real-time output information of the running container and output this information to the console or save it to a file. The following is an example of using the log command to view container logs:
// 查看容器ID为xxx的日志 docker logs xxx // 查看容器ID为xxx的日志,输出到控制台并实时更新 docker logs -f xxx // 查看容器ID为xxx的最近10条日志 docker logs --tail 10 xxx
By using the log command, developers can easily view the real-time output information of the container and quickly determine the problem, but this method is suitable for a single For containers on the host, when the size of the container increases, it becomes difficult to manually view the logs, so log collection tools need to be used to automatically collect and analyze the logs.
3. Use Logstash for log collection and analysis
Logstash is an open source tool for collecting, filtering, converting and sending logs. Data is collected through input plug-ins and processed and converted by filters. data, and then the output plugin sends the processed data to a destination such as Elasticsearch, Kafka, Amazon S3, etc. In the log collection of Docker containers, we can use Logstash as a tool to collect and analyze logs. The following is an example of using Logstash for log collection and analysis:
1. Install Logstash
Download Logstash from the official website and unzip the file to use. The command to start Logstash is as follows:
cd logstash-7.15.1/bin ./logstash -f logstash.conf
2. Configure Logstash
To use Logstash as the log collection tool for the container, we need to configure the input plug-in and output plug-in in Logstash. The following is an example of the configuration file logstash.conf:
input { docker { endpoint => "unix:///var/run/docker.sock" container_id => "ALL" } } filter { grok { match => { "message" => "%{COMBINEDAPACHELOG}" } } } output { elasticsearch { hosts => "localhost:9200" } stdout { codec => "json_lines" } }
The above configuration file means that we need to collect log information from all docker containers, filter and parse the data through the grok filter, and finally output the processed data into Elasticsearch.
4. Use Elasticsearch for data indexing and storage
Elasticsearch is a distributed open source search engine that can be used to search various types of documents. In the log collection of Docker containers, we will use Elasticsearch as the index and storage of data. The following is an example of using Elasticsearch for data indexing and storage:
1. Install Elasticsearch
Download Elasticsearch from the official website and unzip the file to use. The command to start Elasticsearch is as follows:
cd elasticsearch-7.15.1/bin ./elasticsearch
2. Configure Elasticsearch
Configure the name and node name of the ES cluster by modifying the elasticsearch.yml file. The following is a simple elasticsearch.yml configuration file example:
cluster.name: docker-cluster node.name: es-node1 network.host: 0.0.0.0
The above configuration means that we create a cluster named docker-cluster, where the node name is es-node1, and the ES service is bound to all available on the network interface.
3. Create an index
In Elasticsearch, we need to first create an index for the data and specify the fields in the data. The sample code is as follows:
PUT /logstash-test { "mappings": { "properties": { "host": { "type": "keyword" }, "message": { "type": "text" }, "path": { "type": "text" }, "verb": { "type": "keyword" } } } }
The above code creates an index named "logstash-test" in Elasticsearch and defines the fields and field types included in the index.
5. Use Kibana for data visualization display
Kibana is an open source data visualization tool that can be used to display data obtained from Elasticsearch. During the log collection process of Docker containers, we will use Kibana for data visualization display. The following is an example of using Kibana for data visualization display:
1. Install Kibana
Download Kibana from the official website and unzip the file to use. The command to start Kibana is as follows:
cd kibana-7.15.1/bin ./kibana
2. Index template settings
In Kibana, we need to set up the index template. The index template contains data field definitions and query analysis information. The sample code is as follows:
PUT _index_template/logstash-template { "index_patterns": ["logstash-*"], "template": { "mappings": { "properties": { "@timestamp": { "type": "date" }, "@version": { "type": "keyword" }, "message": { "type": "text" }, "path": { "type": "text" } } } } }
The above code means that an index template named "logstash-template" is created and applied to indexes whose names start with "logstash-*".
3. Data visualization
На панели плагинов Kibana вы можете устанавливать визуальные шаблоны и управлять ими. С помощью панели мы можем легко создавать различные типы визуальных диаграмм, такие как линейные диаграммы, гистограммы, круговые диаграммы и т. д.
Подводя итог, в этой статье рассказывается, как использовать Docker для анализа журналов контейнеров и мониторинга исключений, а также приводятся конкретные примеры кода. Сам Docker предоставляет команду log для просмотра журналов контейнера, но просмотр журналов вручную становится сложнее по мере увеличения масштаба контейнера. Используя такие инструменты, как Logstash, Elasticsearch и Kibana, мы можем автоматически собирать и анализировать журналы контейнера и отображать рабочее состояние контейнера, что очень полезно для работы и обслуживания приложений, а также для обработки сбоев.
The above is the detailed content of How to use Docker for container log analysis and exception monitoring. For more information, please follow other related articles on the PHP Chinese website!

The five core components of the Linux operating system are: 1. Kernel, 2. System libraries, 3. System tools, 4. System services, 5. File system. These components work together to ensure the stable and efficient operation of the system, and together form a powerful and flexible operating system.

The five core elements of Linux are: 1. Kernel, 2. Command line interface, 3. File system, 4. Package management, 5. Community and open source. Together, these elements define the nature and functionality of Linux.

Linux user management and security can be achieved through the following steps: 1. Create users and groups, using commands such as sudouseradd-m-gdevelopers-s/bin/bashjohn. 2. Bulkly create users and set password policies, using the for loop and chpasswd commands. 3. Check and fix common errors, home directory and shell settings. 4. Implement best practices such as strong cryptographic policies, regular audits and the principle of minimum authority. 5. Optimize performance, use sudo and adjust PAM module configuration. Through these methods, users can be effectively managed and system security can be improved.

The core operations of Linux file system and process management include file system management and process control. 1) File system operations include creating, deleting, copying and moving files or directories, using commands such as mkdir, rmdir, cp and mv. 2) Process management involves starting, monitoring and killing processes, using commands such as ./my_script.sh&, top and kill.

Shell scripts are powerful tools for automated execution of commands in Linux systems. 1) The shell script executes commands line by line through the interpreter to process variable substitution and conditional judgment. 2) The basic usage includes backup operations, such as using the tar command to back up the directory. 3) Advanced usage involves the use of functions and case statements to manage services. 4) Debugging skills include using set-x to enable debugging mode and set-e to exit when the command fails. 5) Performance optimization is recommended to avoid subshells, use arrays and optimization loops.

Linux is a Unix-based multi-user, multi-tasking operating system that emphasizes simplicity, modularity and openness. Its core functions include: file system: organized in a tree structure, supports multiple file systems such as ext4, XFS, Btrfs, and use df-T to view file system types. Process management: View the process through the ps command, manage the process using PID, involving priority settings and signal processing. Network configuration: Flexible setting of IP addresses and managing network services, and use sudoipaddradd to configure IP. These features are applied in real-life operations through basic commands and advanced script automation, improving efficiency and reducing errors.

The methods to enter Linux maintenance mode include: 1. Edit the GRUB configuration file, add "single" or "1" parameters and update the GRUB configuration; 2. Edit the startup parameters in the GRUB menu, add "single" or "1". Exit maintenance mode only requires restarting the system. With these steps, you can quickly enter maintenance mode when needed and exit safely, ensuring system stability and security.

The core components of Linux include kernel, shell, file system, process management and memory management. 1) Kernel management system resources, 2) shell provides user interaction interface, 3) file system supports multiple formats, 4) Process management is implemented through system calls such as fork, and 5) memory management uses virtual memory technology.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 Chinese version
Chinese version, very easy to use

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Zend Studio 13.0.1
Powerful PHP integrated development environment

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool
