search
HomeDatabaseRedisHow Redis implements data sharding expansion function

How Redis implements data sharding expansion function

Nov 07, 2023 am 10:34 AM
redis data shardingData Sharding Extensionredis scalability

How Redis implements data sharding expansion function

#Redis is a widely used open source Key-Value database. It is favored by developers for its advantages such as high performance, low latency, and high concurrency. However, as the amount of data continues to increase, single-node Redis can no longer meet business needs. In order to solve this problem, Redis introduced the data sharding function to achieve horizontal expansion of data and improve the overall performance of Redis.

This article will introduce how Redis implements the data sharding extension function and provide specific code examples.

1. The principle of Redis data sharding

Redis data sharding refers to storing a data set (such as Key-Value) in multiple Redis instances, that is to say, a The Redis cluster is divided into multiple nodes responsible for different data. The specific implementation method is as follows:

  1. Use consistent hashing algorithm

The consistent hashing algorithm can evenly distribute data across multiple nodes, and each node is responsible for There will not be too much or too little data. For the addition of new nodes, only a small amount of data migration is required to complete the data balance.

  1. Add virtual nodes

In order to prevent node load imbalance and single point of failure, you can add multiple virtual nodes to each physical node and map these virtual nodes into the data collection so that the data is more evenly distributed on various physical nodes.

2. Implementation of Redis data sharding

The following are the specific steps for Redis to implement the data sharding function:

  1. Create a Redis cluster

You can use the Redis cluster tool to create a Redis cluster easily and quickly, so I won’t go into details here.

  1. Use consistent hashing algorithm

Redis provides a hash slot allocator, which can allocate data to different nodes according to the consistent hashing algorithm. The example is as follows :

hash_slot_cnt = 16384  # hash槽数量

def get_slot(s):
    return crc16(s) % hash_slot_cnt  # 根据字符串s计算其hash槽

class RedisCluster:
    def __init__(self, nodes):
        self.nodes = nodes  # 节点列表
        self.slot2node = {}

        for node in self.nodes:
            for slot in node['slots']:
                self.slot2node[slot] = node

    def get_node(self, key):
        slot = get_slot(key)
        return self.slot2node[slot]  # 根据key获取节点
  1. Add virtual node

In order to prevent a single node from crashing or overloading, we can use virtual nodes, the example is as follows:

virtual_node_num = 10  # 每个实际节点添加10个虚拟节点

class RedisCluster:
    def __init__(self, nodes):
        self.nodes = nodes
        self.slot2node = {}

        for node in self.nodes:
            for i in range(virtual_node_num):
                virtual_slot = crc16(node['host'] + str(i)) % hash_slot_cnt
                self.slot2node[virtual_slot] = node

    def get_node(self, key):
        slot = get_slot(key)
        return self.slot2node[slot]
  1. Data migration

When a new node joins or an old node leaves the cluster, data migration needs to be performed. Redistribute the data originally allocated to the old node to the new node. The example is as follows:

def migrate_slot(from_node, to_node, slot):
    if from_node == to_node:  # 节点相同,不需要进行迁移
        return

    data = from_node['client'].cluster('getkeysinslot', slot, 10)
    print('migrate %d keys to node %s' % (len(data), to_node['host']))

    if data:
        to_node['client'].migrate(to_node['host'], hash_slot_cnt, '', 0, 1000, keys=data)

3. Complete code example

The following is a complete code example for Redis to implement the data sharding extension function:

import redis

hash_slot_cnt = 16384  # hash槽数量
virtual_node_num = 10  # 每个实际节点添加10个虚拟节点

def get_slot(s):
    return crc16(s) % hash_slot_cnt

def migrate_slot(from_node, to_node, slot):
    if from_node == to_node:
        return

    data = from_node['client'].cluster('getkeysinslot', slot, 10)
    print('migrate %d keys to node %s' % (len(data), to_node['host']))

    if data:
        to_node['client'].migrate(to_node['host'], hash_slot_cnt, '', 0, 1000, keys=data)

class RedisCluster:
    def __init__(self, nodes):
        self.nodes = nodes
        self.slot2node = {}

        for node in self.nodes:
            for i in range(virtual_node_num):
                virtual_slot = crc16(node['host'] + str(i)) % hash_slot_cnt
                self.slot2node[virtual_slot] = node

    def get_node(self, key):
        slot = get_slot(key)
        return self.slot2node[slot]

    def add_node(self, node):
        self.nodes.append(node)

        for i in range(virtual_node_num):
            virtual_slot = crc16(node['host'] + str(i)) % hash_slot_cnt
            self.slot2node[virtual_slot] = node

        for slot in range(hash_slot_cnt):
            if self.slot2node[slot]['host'] == node['host']:
                migrate_slot(self.slot2node[slot], node, slot)

    def remove_node(self, node):
        self.nodes.remove(node)

        for i in range(virtual_node_num):
            virtual_slot = crc16(node['host'] + str(i)) % hash_slot_cnt
            del self.slot2node[virtual_slot]

        for slot in range(hash_slot_cnt):
            if self.slot2node[slot]['host'] == node['host']:
                new_node = None

                for i in range(len(self.nodes)):
                    if self.nodes[i]['host'] != node['host'] and self.nodes[i]['slots']:
                        new_node = self.nodes[i]
                        break

                if new_node:
                    migrate_slot(node, new_node, slot)
                else:
                    print('no new node for slot %d' % slot)

if __name__ == '__main__':
    nodes = [
        {'host': '127.0.0.1', 'port': 7000, 'slots': [0, 1, 2]},
        {'host': '127.0.0.1', 'port': 7001, 'slots': [3, 4, 5]},
        {'host': '127.0.0.1', 'port': 7002, 'slots': [6, 7, 8]},
        {'host': '127.0.0.1', 'port': 7003, 'slots': []},
        {'host': '127.0.0.1', 'port': 7004, 'slots': []},
        {'host': '127.0.0.1', 'port': 7005, 'slots': []},
        {'host': '127.0.0.1', 'port': 7006, 'slots': []},
        {'host': '127.0.0.1', 'port': 7007, 'slots': []},
        {'host': '127.0.0.1', 'port': 7008, 'slots': []},
        {'host': '127.0.0.1', 'port': 7009, 'slots': []},
    ]

    clients = []
    for node in nodes:
        client = redis.Redis(host=node['host'], port=node['port'])
        node['client'] = client
        clients.append(client)

    cluster = RedisCluster(nodes)

    for key in range(100):
        node = cluster.get_node(str(key))
        node['client'].set('key_%d' % key, key)

    cluster.add_node({'host': '127.0.0.1', 'port': 7010, 'slots': []})

    for key in range(100, 200):
        node = cluster.get_node(str(key))
        node['client'].set('key_%d' % key, key)

    cluster.remove_node(nodes[-1])

The above code creates a Redis cluster. New nodes are added and old nodes are deleted, demonstrating the balanced dispersion of data and data migration.

The above is the detailed content of How Redis implements data sharding expansion function. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Redis: Classifying Its Database ApproachRedis: Classifying Its Database ApproachApr 15, 2025 am 12:06 AM

Redis's database methods include in-memory databases and key-value storage. 1) Redis stores data in memory, and reads and writes fast. 2) It uses key-value pairs to store data, supports complex data structures such as lists, collections, hash tables and ordered collections, suitable for caches and NoSQL databases.

Why Use Redis? Benefits and AdvantagesWhy Use Redis? Benefits and AdvantagesApr 14, 2025 am 12:07 AM

Redis is a powerful database solution because it provides fast performance, rich data structures, high availability and scalability, persistence capabilities, and a wide range of ecosystem support. 1) Extremely fast performance: Redis's data is stored in memory and has extremely fast read and write speeds, suitable for high concurrency and low latency applications. 2) Rich data structure: supports multiple data types, such as lists, collections, etc., which are suitable for a variety of scenarios. 3) High availability and scalability: supports master-slave replication and cluster mode to achieve high availability and horizontal scalability. 4) Persistence and data security: Data persistence is achieved through RDB and AOF to ensure data integrity and reliability. 5) Wide ecosystem and community support: with a huge ecosystem and active community,

Understanding NoSQL: Key Features of RedisUnderstanding NoSQL: Key Features of RedisApr 13, 2025 am 12:17 AM

Key features of Redis include speed, flexibility and rich data structure support. 1) Speed: Redis is an in-memory database, and read and write operations are almost instantaneous, suitable for cache and session management. 2) Flexibility: Supports multiple data structures, such as strings, lists, collections, etc., which are suitable for complex data processing. 3) Data structure support: provides strings, lists, collections, hash tables, etc., which are suitable for different business needs.

Redis: Identifying Its Primary FunctionRedis: Identifying Its Primary FunctionApr 12, 2025 am 12:01 AM

The core function of Redis is a high-performance in-memory data storage and processing system. 1) High-speed data access: Redis stores data in memory and provides microsecond-level read and write speed. 2) Rich data structure: supports strings, lists, collections, etc., and adapts to a variety of application scenarios. 3) Persistence: Persist data to disk through RDB and AOF. 4) Publish subscription: Can be used in message queues or real-time communication systems.

Redis: A Guide to Popular Data StructuresRedis: A Guide to Popular Data StructuresApr 11, 2025 am 12:04 AM

Redis supports a variety of data structures, including: 1. String, suitable for storing single-value data; 2. List, suitable for queues and stacks; 3. Set, used for storing non-duplicate data; 4. Ordered Set, suitable for ranking lists and priority queues; 5. Hash table, suitable for storing object or structured data.

How to implement redis counterHow to implement redis counterApr 10, 2025 pm 10:21 PM

Redis counter is a mechanism that uses Redis key-value pair storage to implement counting operations, including the following steps: creating counter keys, increasing counts, decreasing counts, resetting counts, and obtaining counts. The advantages of Redis counters include fast speed, high concurrency, durability and simplicity and ease of use. It can be used in scenarios such as user access counting, real-time metric tracking, game scores and rankings, and order processing counting.

How to use the redis command lineHow to use the redis command lineApr 10, 2025 pm 10:18 PM

Use the Redis command line tool (redis-cli) to manage and operate Redis through the following steps: Connect to the server, specify the address and port. Send commands to the server using the command name and parameters. Use the HELP command to view help information for a specific command. Use the QUIT command to exit the command line tool.

How to build the redis cluster modeHow to build the redis cluster modeApr 10, 2025 pm 10:15 PM

Redis cluster mode deploys Redis instances to multiple servers through sharding, improving scalability and availability. The construction steps are as follows: Create odd Redis instances with different ports; Create 3 sentinel instances, monitor Redis instances and failover; configure sentinel configuration files, add monitoring Redis instance information and failover settings; configure Redis instance configuration files, enable cluster mode and specify the cluster information file path; create nodes.conf file, containing information of each Redis instance; start the cluster, execute the create command to create a cluster and specify the number of replicas; log in to the cluster to execute the CLUSTER INFO command to verify the cluster status; make

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment