Using Redis to implement distributed cache penetration solution
Using Redis to implement distributed cache penetration solution
With the continuous development of Internet business, the amount of data access is also increasing. In order to improve the performance and User experience and caching technology have gradually become an indispensable part. Redis, as an efficient and scalable caching middleware solution, is favored by developers. When using Redis as a distributed cache, in order to avoid performance problems caused by cache penetration, we need to implement a reliable solution.
This article will introduce how to use Redis to implement a distributed cache penetration solution, and provide specific code examples to explain.
1. What is cache penetration?
When using caching technology, if strict validity control is not implemented on the cache, cache penetration problems may occur, that is, when the data required in a request does not exist in the cache, each time All requests will directly access the database, causing database resources to be overloaded, thereby reducing the performance of the entire system or even causing downtime.
The main reason for cache penetration is that all data cannot be stored in the cache, and the data in the request may not be stored in the cache. If there is no effective control, then each request will be directly Accessing the database causes an extreme waste of system resources.
2. How to solve the cache penetration problem
To solve the cache penetration problem, we can use the following two methods:
1. Bloom Filter algorithm
Bloom Filter algorithm is an efficient data structure based on bit vectors, which can be used to quickly determine whether an element belongs to a set. It has the characteristics of very low space and time complexity. When using the Bloom Filter algorithm, we can store the hash value of the requested data in the Bloom Filter's bit vector. If the hash value of the data request does not exist in the Bloom Filter, then the request can be directly rejected. This avoids the problem of cache penetration.
2. Cache preheating
Cache preheating refers to loading the data to be used into the cache in advance when the system starts to ensure that the request already exists before entering the background system in the cache, thereby avoiding cache penetration problems.
3. Using Redis to implement distributed cache penetration solution
When using Redis to implement distributed cache, we can use the following two methods:
1. Use Distributed lock
When making cache queries, we can use distributed locks to ensure that only one thread can access the database and update the cache. If multiple threads access the same data at the same time, only one thread can grab the lock, thus avoiding the problem of cache penetration.
The following is a code example implemented using distributed locks:
def query_data(key): #先尝试从缓存中读取数据 data = cache.get(key) #如果缓存中没有该数据,则获取分布式锁 if not data: lock_key = 'lock:' + key #尝试获取锁 if cache.setnx(lock_key, 1): #若获取到锁,则从数据库中读取数据,并更新到缓存中 data = db.query(key) cache.set(key, data) #释放锁 cache.delete(lock_key) else: #如果未获取到锁,则等待一段时间后重试 time.sleep(0.1) data = query_data(key) return data
2. Using Bloom filter
Before caching the query, we can first hash the data The hash value is stored in the Bloom filter. If the data corresponding to the hash value does not exist, the request can be directly rejected, thus avoiding the problem of cache penetration.
The following is a code example implemented using Bloom filters:
import redis from pybloom_live import BloomFilter #初始化布隆过滤器 bf = BloomFilter(capacity=1000000, error_rate=0.001) #初始化Redis连接池 pool = redis.ConnectionPool(host='127.0.0.1', port=6379) cache = redis.Redis(connection_pool=pool) def query_data(key): #先尝试从缓存中读取数据 data = cache.get(key) #如果缓存中没有该数据,则检查布隆过滤器,如果布隆过滤器中不存在该数据,则直接返回None if not data and (key not in bf): return None #如果缓存中没有该数据,但是存在于布隆过滤器中,则获取分布式锁 if not data: lock_key = 'lock:' + key #尝试获取锁 if cache.setnx(lock_key, 1): #若获取到锁,则从数据库中读取数据,并更新到缓存中 data = db.query(key) cache.set(key, data) #将哈希值添加到布隆过滤器中 bf.add(key) #释放锁 cache.delete(lock_key) else: #如果未获取到锁,则等待一段时间后重试 time.sleep(0.1) data = query_data(key) return data
The above is a specific implementation code example using Redis to implement a distributed cache penetration solution.
Summary:
When using Redis as a distributed cache middleware solution, in order to avoid performance problems caused by cache penetration, we can use distributed locks or bloom filters. method to solve. While using Bloom filters, we can also combine the cache preheating method to load the data to be used into the Redis cache in advance to ensure that the request already exists in the cache before entering the background system, thereby avoiding Cache penetration problem.
The above is the detailed content of Using Redis to implement distributed cache penetration solution. For more information, please follow other related articles on the PHP Chinese website!

Redis'sServer-SideOperationsofferFunctionsandTriggersforexecutingcomplexoperationsontheserver.1)FunctionsallowcustomoperationsinLua,JavaScript,orRedis'sscriptinglanguage,enhancingscalabilityandmaintenance.2)Triggersenableautomaticfunctionexecutionone

Redisisbothadatabaseandaserver.1)Asadatabase,itusesin-memorystorageforfastaccess,idealforreal-timeapplicationsandcaching.2)Asaserver,itsupportspub/submessagingandLuascriptingforreal-timecommunicationandserver-sideoperations.

Redis is a NoSQL database that provides high performance and flexibility. 1) Store data through key-value pairs, suitable for processing large-scale data and high concurrency. 2) Memory storage and single-threaded models ensure fast read and write and atomicity. 3) Use RDB and AOF mechanisms to persist data, supporting high availability and scale-out.

Redis is a memory data structure storage system, mainly used as a database, cache and message broker. Its core features include single-threaded model, I/O multiplexing, persistence mechanism, replication and clustering functions. Redis is commonly used in practical applications for caching, session storage, and message queues. It can significantly improve its performance by selecting the right data structure, using pipelines and transactions, and monitoring and tuning.

The main difference between Redis and SQL databases is that Redis is an in-memory database, suitable for high performance and flexibility requirements; SQL database is a relational database, suitable for complex queries and data consistency requirements. Specifically, 1) Redis provides high-speed data access and caching services, supports multiple data types, suitable for caching and real-time data processing; 2) SQL database manages data through a table structure, supports complex queries and transaction processing, and is suitable for scenarios such as e-commerce and financial systems that require data consistency.

Redisactsasbothadatastoreandaservice.1)Asadatastore,itusesin-memorystorageforfastoperations,supportingvariousdatastructureslikekey-valuepairsandsortedsets.2)Asaservice,itprovidesfunctionalitieslikepub/submessagingandLuascriptingforcomplexoperationsan

Compared with other databases, Redis has the following unique advantages: 1) extremely fast speed, and read and write operations are usually at the microsecond level; 2) supports rich data structures and operations; 3) flexible usage scenarios such as caches, counters and publish subscriptions. When choosing Redis or other databases, it depends on the specific needs and scenarios. Redis performs well in high-performance and low-latency applications.

Redis plays a key role in data storage and management, and has become the core of modern applications through its multiple data structures and persistence mechanisms. 1) Redis supports data structures such as strings, lists, collections, ordered collections and hash tables, and is suitable for cache and complex business logic. 2) Through two persistence methods, RDB and AOF, Redis ensures reliable storage and rapid recovery of data.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

SublimeText3 English version
Recommended: Win version, supports code prompts!

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SublimeText3 Chinese version
Chinese version, very easy to use

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.
