search
HomeTechnology peripheralsAIGoogle launches 'advanced weather forecasting AI” MetNet-3, claiming that its prediction results exceed traditional physical models

谷歌推出“先进天气预报 AI”MetNet-3,号称预测结果超过传统物理模型

It was reported on November 3 that Google Research and DeepMind collaborated to develop the latest weather model MetNet-3, which is based on the previous MetNet and MetNet-2. It can make high-resolution predictions of global weather conditions 24 hours in advance, including precipitation, surface temperature, wind speed, wind direction and body temperature.

谷歌推出“先进天气预报 AI”MetNet-3,号称预测结果超过传统物理模型

This site found that Google mentioned that the MetNet-3 model has been implemented in the "Google Mobile Software" weather forecast on the mobile platform.

谷歌推出“先进天气预报 AI”MetNet-3,号称预测结果超过传统物理模型

谷歌推出“先进天气预报 AI”MetNet-3,号称预测结果超过传统物理模型

MetNet-3 model can create "smooth and highly accurate" forecasts with spatial resolutions ranging from 1 to 4 kilometers, and The analysis interval is 2 minutes. Experiments have proven that the prediction ability of MetNet-3 surpasses traditional physical weather forecast models. For example, the traditional physical basic models "NWP (Numerical Weather Prediction)" and "Rapid Refresh Model (HRRR)" are both surpassed by MetNet-3

谷歌推出“先进天气预报 AI”MetNet-3,号称预测结果超过传统物理模型

MetNet-3 is different from other machine learning methods based on traditional methods in predicting weather. The key point is that MetNet-3 directly uses atmospheric observation data to train and Evaluate. The researchers mentioned that the advantage of direct observation is higher data density and resolution. In addition, in addition to inheriting the data from the previous MetNet model, MetNet-3 also newly learns temperature and wind measurement data from weather stations to try to conduct comprehensive weather predictions for all locations.

谷歌推出“先进天气预报 AI”MetNet-3,号称预测结果超过传统物理模型

Researchers pointed out that the key innovation of MetNet-3 is the use of densification technology to improve the accuracy and coverage of weather forecasts

In traditional In basic physical models, weather forecasting usually requires two steps, namely data assimilation and simulation. Data assimilation refers to integrating actual observation data into the model, while simulation predicts weather based on these data. .

Densification technology is used in MetNet-3 to merge the two steps of "data assimilation" and "simulation" through neural networks to achieve faster and more direct weather predictions. The technology increases the efficiency with which models acquire and process data, and utilizes neural networks to improve the accuracy of weather forecasts. At the same time, the MetNet-3 model is able to independently process each specific data stream containing contour information, satellite information, radar information, etc., thereby obtaining a more accurate and comprehensive weather forecast

In addition, using "direct observation" The data is used as a learning sample to bring high-resolution advantages based on space and time to the MetNet-3 model. Weather stations and ground radar stations can provide measurement data at specific locations with a resolution of 1 km every few minutes. . By comparison, even the world's most advanced physical models can only generate data at 9 km resolution and provide hourly forecasts every 6 hours.

谷歌推出“先进天气预报 AI”MetNet-3,号称预测结果超过传统物理模型

MetNet-3 can effectively process and simulate the collected observation data at intervals as short as 2 minutes, combined with densification technology and lead time adjustment (Lead Time Conditioning) technology and high-resolution direct observation method, MetNet-3 can produce 24-hour forecasts with a time resolution of 2 minutes, providing users with more accurate and real-time weather forecast information.

谷歌推出“先进天气预报 AI”MetNet-3,号称预测结果超过传统物理模型

In addition, MetNet-3 also utilizes precipitation estimates from ground radar, which allows it to learn from a wider range of data compared to weather information observed at weather stations. Therefore, the prediction results of MetNet-3 are better than the industry's most advanced physical models in terms of wind speed and precipitation.

The main value of MetNet-3 is that it can accurately predict weather with machine learning technology in real time and provide weather forecast services on Google products. The model continuously creates complete and accurate forecasts based on the latest data that is constantly collected. Researchers mentioned that this is different from traditional physical reasoning systems and can better meet the unique needs of weather forecasting.

The above is the detailed content of Google launches 'advanced weather forecasting AI” MetNet-3, claiming that its prediction results exceed traditional physical models. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
Are You At Risk Of AI Agency Decay? Take The Test To Find OutAre You At Risk Of AI Agency Decay? Take The Test To Find OutApr 21, 2025 am 11:31 AM

This article explores the growing concern of "AI agency decay"—the gradual decline in our ability to think and decide independently. This is especially crucial for business leaders navigating the increasingly automated world while retainin

How to Build an AI Agent from Scratch? - Analytics VidhyaHow to Build an AI Agent from Scratch? - Analytics VidhyaApr 21, 2025 am 11:30 AM

Ever wondered how AI agents like Siri and Alexa work? These intelligent systems are becoming more important in our daily lives. This article introduces the ReAct pattern, a method that enhances AI agents by combining reasoning an

Revisiting The Humanities In The Age Of AIRevisiting The Humanities In The Age Of AIApr 21, 2025 am 11:28 AM

"I think AI tools are changing the learning opportunities for college students. We believe in developing students in core courses, but more and more people also want to get a perspective of computational and statistical thinking," said University of Chicago President Paul Alivisatos in an interview with Deloitte Nitin Mittal at the Davos Forum in January. He believes that people will have to become creators and co-creators of AI, which means that learning and other aspects need to adapt to some major changes. Digital intelligence and critical thinking Professor Alexa Joubin of George Washington University described artificial intelligence as a “heuristic tool” in the humanities and explores how it changes

Understanding LangChain Agent FrameworkUnderstanding LangChain Agent FrameworkApr 21, 2025 am 11:25 AM

LangChain is a powerful toolkit for building sophisticated AI applications. Its agent architecture is particularly noteworthy, allowing developers to create intelligent systems capable of independent reasoning, decision-making, and action. This expl

What are the Radial Basis Functions Neural Networks?What are the Radial Basis Functions Neural Networks?Apr 21, 2025 am 11:13 AM

Radial Basis Function Neural Networks (RBFNNs): A Comprehensive Guide Radial Basis Function Neural Networks (RBFNNs) are a powerful type of neural network architecture that leverages radial basis functions for activation. Their unique structure make

The Meshing Of Minds And Machines Has ArrivedThe Meshing Of Minds And Machines Has ArrivedApr 21, 2025 am 11:11 AM

Brain-computer interfaces (BCIs) directly link the brain to external devices, translating brain impulses into actions without physical movement. This technology utilizes implanted sensors to capture brain signals, converting them into digital comman

Insights on spaCy, Prodigy and Generative AI from Ines MontaniInsights on spaCy, Prodigy and Generative AI from Ines MontaniApr 21, 2025 am 11:01 AM

This "Leading with Data" episode features Ines Montani, co-founder and CEO of Explosion AI, and co-developer of spaCy and Prodigy. Ines offers expert insights into the evolution of these tools, Explosion's unique business model, and the tr

A Guide to Building Agentic RAG Systems with LangGraphA Guide to Building Agentic RAG Systems with LangGraphApr 21, 2025 am 11:00 AM

This article explores Retrieval Augmented Generation (RAG) systems and how AI agents can enhance their capabilities. Traditional RAG systems, while useful for leveraging custom enterprise data, suffer from limitations such as a lack of real-time dat

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.