


How to use ChatGPT and Java to develop an intelligent question and answer community
The intelligent question and answer community has received more and more attention and attention in today's Internet social platforms. It provides users with Provides a convenient way to meet their needs by asking questions and getting answers. With the continuous development of artificial intelligence, it is becoming easier and easier to develop an intelligent question and answer community using ChatGPT and Java. This article will introduce how to use ChatGPT and Java to build a simple intelligent question and answer community, and provide some specific code examples.
Step 1: Set up ChatGPT
First, we need to set up the ChatGPT model to provide question and answer functionality. We can use the GPT model provided by OpenAI or a pre-trained model based on the Hugging Face Transformers library. The following sample code shows an example of using the Hugging Face Transformers library:
import org.apache.commons.lang3.StringUtils; import org.huggingface.models.GPTModel; import org.huggingface.tokenizers.GPTTokenizer; public class ChatGPT { private GPTModel model; private GPTTokenizer tokenizer; public ChatGPT(String modelPath, String tokenizerPath) { model = GPTModel.fromPretrained(modelPath); tokenizer = GPTTokenizer.fromPretrained(tokenizerPath); } public String generateAnswer(String question) { String input = "Q: " + question + " A:"; float[] scores = model.generateScore(input).getScores(); String output = tokenizer.decode(scores); return StringUtils.substringBetween(output, "A: ", " "); } }
This code uses the GPT model and GPTTokenizer in the Hugging Face Transformers library, where modelPath
and tokenizerPath
is the path of the pre-trained model and tokenizer. The generateAnswer
method receives a question as input and returns a generated answer.
Step 2: Build a Q&A community
In Java, you can use various development frameworks to build the backend of the Q&A community. Here we use Spring Boot as the development framework and use the REST API to handle the interaction between the front end and the back end. Here is a simple sample code:
import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.web.bind.annotation.GetMapping; import org.springframework.web.bind.annotation.RequestParam; import org.springframework.web.bind.annotation.RestController; @SpringBootApplication @RestController public class QASystemApp { private ChatGPT chatGPT; public QASystemApp() { chatGPT = new ChatGPT("path/to/model", "path/to/tokenizer"); } @GetMapping("/answer") public String getAnswer(@RequestParam String question) { return chatGPT.generateAnswer(question); } public static void main(String[] args) { SpringApplication.run(QASystemApp.class, args); } }
In this code, the QASystemApp
class is marked as a Spring Boot application using the @SpringBootApplication
annotation and ## The #@RestController annotation marks it as a REST API controller. The
getAnswer method receives a request parameter named
question and calls the
chatGPT.generateAnswer method to generate an answer.
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>智能问答社区</title> </head> <body> <h1 id="智能问答社区">智能问答社区</h1> <form id="questionForm"> <label for="question">问题:</label> <input type="text" id="question" name="question" required> <button type="submit">提交</button> </form> <div id="answer"></div> <script> document.getElementById("questionForm").addEventListener("submit", function(event) { event.preventDefault(); var question = document.getElementById("question").value; fetch("/answer?question=" + encodeURIComponent(question)) .then(function(response) { return response.text(); }) .then(function(answer) { document.getElementById("answer").innerText = answer; document.getElementById("question").value = ""; }); }); </script> </body> </html>This code creates an HTML page that contains a form input box and a
element for displaying the answer. When the user submits a question, obtain the value of the question through JavaScript code, and use JavaScript's Fetch API to send a GET request to
/answerAPI, and display the generated answer in
element.
In this way, the development of an intelligent question and answer community using ChatGPT and Java is completed. When a user submits a question through the front-end interface, the back-end will use the ChatGPT model to generate an answer and return the answer to the front-end for display to the user. Of course, this is just a simple example, you can develop and optimize it in depth according to your own needs. I hope this article can help you better understand how to use ChatGPT and Java to develop an intelligent Q&A community.
The above is the detailed content of How to use ChatGPT and Java to develop an intelligent question and answer community. For more information, please follow other related articles on the PHP Chinese website!

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于结构化数据处理开源库SPL的相关问题,下面就一起来看一下java下理想的结构化数据处理类库,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于PriorityQueue优先级队列的相关知识,Java集合框架中提供了PriorityQueue和PriorityBlockingQueue两种类型的优先级队列,PriorityQueue是线程不安全的,PriorityBlockingQueue是线程安全的,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于java锁的相关问题,包括了独占锁、悲观锁、乐观锁、共享锁等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于多线程的相关问题,包括了线程安装、线程加锁与线程不安全的原因、线程安全的标准类等等内容,希望对大家有帮助。

本篇文章给大家带来了关于Java的相关知识,其中主要介绍了关于关键字中this和super的相关问题,以及他们的一些区别,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于枚举的相关问题,包括了枚举的基本操作、集合类对枚举的支持等等内容,下面一起来看一下,希望对大家有帮助。

封装是一种信息隐藏技术,是指一种将抽象性函式接口的实现细节部分包装、隐藏起来的方法;封装可以被认为是一个保护屏障,防止指定类的代码和数据被外部类定义的代码随机访问。封装可以通过关键字private,protected和public实现。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于设计模式的相关问题,主要将装饰器模式的相关内容,指在不改变现有对象结构的情况下,动态地给该对象增加一些职责的模式,希望对大家有帮助。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Dreamweaver CS6
Visual web development tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool
