Home > Article > Backend Development > What are the usage scenarios of heap and priority queue in Python?
What are the usage scenarios of heap and priority queue in Python?
Heap is a special binary tree structure that is often used to efficiently maintain a dynamic collection. The heapq module in Python provides a heap implementation and can easily perform heap operations.
Priority queue is also a special data structure. Different from ordinary queues, each element of it has a priority associated with it. The highest priority element is taken out first. The heapq module in Python can also implement the priority queue function.
Below we introduce some specific scenarios of using heaps and priority queues, and give relevant code examples.
import heapq def top_k_smallest(nums, k): heap = [] for num in nums: heapq.heappush(heap, num) if len(heap) > k: heapq.heappop(heap) return heap nums = [5, 3, 8, 2, 7, 1, 9] k = 3 result = top_k_smallest(nums, k) print(result) # 输出 [3, 2, 1]
import heapq def merge_sorted_arrays(arrays): result = [] pq = [] for array in arrays: if array: heapq.heappush(pq, (array[0], array)) while pq: smallest, array = heapq.heappop(pq) result.append(smallest) if array[1:]: heapq.heappush(pq, (array[1], array[1:])) return result arrays = [[1, 3, 5], [2, 4, 6], [0, 7, 8]] result = merge_sorted_arrays(arrays) print(result) # 输出 [0, 1, 2, 3, 4, 5, 6, 7, 8]
import heapq def median(nums): min_heap = [] max_heap = [] for num in nums: if len(max_heap) == 0 or num <= -max_heap[0]: heapq.heappush(max_heap, -num) else: heapq.heappush(min_heap, num) if len(max_heap) > len(min_heap) + 1: heapq.heappush(min_heap, -heapq.heappop(max_heap)) elif len(min_heap) > len(max_heap): heapq.heappush(max_heap, -heapq.heappop(min_heap)) if len(max_heap) > len(min_heap): return -max_heap[0] elif len(min_heap) > len(max_heap): return min_heap[0] else: return (-max_heap[0] + min_heap[0]) / 2 nums = [4, 2, 5, 7, 1, 8, 3, 6] result = median(nums) print(result) # 输出 4.5
The above are some common usage scenarios and sample codes of heap and priority queue in Python. Heaps and priority queues are some commonly used data structures, and mastering their use is very helpful for solving some complex problems.
The above is the detailed content of What are the usage scenarios of heap and priority queue in Python?. For more information, please follow other related articles on the PHP Chinese website!