


ChatGPT Java: How to automatically summarize and extract key information from articles
ChatGPT Java: How to implement automatic summarization and extraction of key information from articles, specific code examples are required
Summary and key information extraction are very important in information retrieval and text processing Task. To implement automatic summarization and extract key information of articles in Java, you can use natural language processing (NLP) libraries and related algorithms. This article will introduce how to use Lucene and Stanford CoreNLP to implement these functions, and give specific code examples.
1. Automatic summary
Automatic summary generates a concise summary of the text by extracting important sentences or phrases from the text. In Java, we can use the Lucene library to implement the automatic summary function. The following is a simple sample code:
import org.apache.lucene.analysis.Analyzer; import org.apache.lucene.analysis.standard.StandardAnalyzer; import org.apache.lucene.document.Document; import org.apache.lucene.document.Field; import org.apache.lucene.document.TextField; import org.apache.lucene.index.IndexWriter; import org.apache.lucene.index.IndexWriterConfig; import org.apache.lucene.search.IndexSearcher; import org.apache.lucene.search.ScoreDoc; import org.apache.lucene.search.TopDocs; import org.apache.lucene.store.Directory; import org.apache.lucene.store.RAMDirectory; public class Summarizer { public static String summarize(String text, int numSentences) throws Exception { // 创建索引 Directory directory = new RAMDirectory(); Analyzer analyzer = new StandardAnalyzer(); IndexWriterConfig config = new IndexWriterConfig(analyzer); IndexWriter writer = new IndexWriter(directory, config); // 创建文档 Document doc = new Document(); doc.add(new TextField("text", text, Field.Store.YES)); writer.addDocument(doc); writer.close(); // 搜索并获取摘要 IndexSearcher searcher = new IndexSearcher(directory); TopDocs topDocs = searcher.search(query, numSentences); StringBuilder summary = new StringBuilder(); for (ScoreDoc scoreDoc : topDocs.scoreDocs) { Document summaryDoc = searcher.doc(scoreDoc.doc); summary.append(summaryDoc.get("text")).append(" "); } searcher.getIndexReader().close(); directory.close(); return summary.toString(); } }
In the above code, we use the Lucene library to create a memory index and search results, and then extract relevant sentences as summaries.
2. Extract key information of the article
Key information extraction refers to extracting the most representative and important keywords or phrases from the text. In Java, we can use the Stanford CoreNLP library to implement this functionality. The following is a simple sample code:
import edu.stanford.nlp.simple.*; public class KeywordExtractor { public static List<String> extractKeywords(String text, int numKeywords) { List<String> keywords = new ArrayList<>(); Document document = new Document(text); // 提取名词关键词 for (Sentence sentence : document.sentences()) { for (String word : sentence.words()) { if (sentence.posTag(word).startsWith("NN")) { keywords.add(word); } } } // 统计关键词频率 Map<String, Integer> freqMap = new HashMap<>(); for (String keyword : keywords) { freqMap.put(keyword, freqMap.getOrDefault(keyword, 0) + 1); } // 按照频率排序 List<Map.Entry<String, Integer>> sortedList = new ArrayList<>(freqMap.entrySet()); sortedList.sort(Map.Entry.comparingByValue(Comparator.reverseOrder())); // 返回前 numKeywords 个关键词 List<String> topKeywords = new ArrayList<>(); for (int i = 0; i < Math.min(numKeywords, sortedList.size()); i++) { topKeywords.add(sortedList.get(i).getKey()); } return topKeywords; } }
In the above code, we use the Stanford CoreNLP library to extract noun keywords in the text, and use frequency statistics and ranking to obtain the most representative keywords.
3. Summary
This article introduces how to use Java to implement automatic summary and extract key information of articles. By using Lucene and Stanford CoreNLP libraries and related algorithms, we can implement these functions more easily. Hopefully these code examples will help you better understand and practice these tasks.
The above is the detailed content of ChatGPT Java: How to automatically summarize and extract key information from articles. For more information, please follow other related articles on the PHP Chinese website!

The article discusses using Maven and Gradle for Java project management, build automation, and dependency resolution, comparing their approaches and optimization strategies.

The article discusses creating and using custom Java libraries (JAR files) with proper versioning and dependency management, using tools like Maven and Gradle.

The article discusses implementing multi-level caching in Java using Caffeine and Guava Cache to enhance application performance. It covers setup, integration, and performance benefits, along with configuration and eviction policy management best pra

The article discusses using JPA for object-relational mapping with advanced features like caching and lazy loading. It covers setup, entity mapping, and best practices for optimizing performance while highlighting potential pitfalls.[159 characters]

Java's classloading involves loading, linking, and initializing classes using a hierarchical system with Bootstrap, Extension, and Application classloaders. The parent delegation model ensures core classes are loaded first, affecting custom class loa


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

WebStorm Mac version
Useful JavaScript development tools