


Since the release of AutoGL in 2020, the team of Professor Zhu Wenwu of Tsinghua University has made new progress in the interpretability and generalizability of automatic graph machine learning, with special focus on graph Transformer, graph In terms of out-of-distribution generalization (OOD), graph self-supervised learning, etc., the graph neural architecture search and evaluation benchmark was published, and the first lightweight intelligence library (AutoGL-light) was released on GitLink, China's new generation open source innovation service platform.
Intelligence Database Review
Graph is a general abstraction that describes the relationship between data. It widely exists in different research fields and has Many important applications, such as social network analysis, recommendation systems, traffic prediction and other Internet applications, new drug discovery, new material preparation and other scientific applications (AI for Science), cover many different fields. Graph machine learning has gained widespread attention in recent years. Since different graph data vary widely in structure, nature, and tasks, existing manually designed graph machine learning models lack the ability to generalize to different scenarios and environmental changes. AutoML on Graphs is the forefront of graph machine learning development. It aims to automatically design the optimal graph machine learning model for given data and tasks. It is of great value in both research and application.
In response to the problem of automatic machine learning on graphs, Professor Zhu Wenwu of Tsinghua University’s team began planning in 2017 and released the AutoGL in 2020 - the world’s first automatic machine learning for graphs Machine learning platforms and toolkits.
Project address: https://github.com/THUMNLab/AutoGL
The smart library has been It has received over a thousand stars on GitHub, attracted tens of thousands of visits from more than 20 countries and regions, and was published on GitLink. The smart library includes a complete set of graph automatic machine learning processes, covering mainstream graph automatic machine learning methods. Through the graph automatic machine learning solution AutoGL Solver, Zhitu splits the automatic machine learning on the graph into five core parts: graph automatic feature engineering, graph neural architecture search (NAS), graph hyperparameter optimization (HPO), graph model training, and automatic integration of graph models. The smart library already supports various types of graph tasks such as node classification, heterogeneous graph node classification, link prediction, and graph classification.
New progress in graph automatic machine learning research
In view of the current lack of interpretability and generalizability of graph automatic machine learning, Intelligent Intelligence The graph team has made a series of new progress in graph automatic machine learning research.
1. Graph out-of-distribution generalization (OOD) architecture search
Neural architecture search for graphs cannot process graphs To solve the problem of data distribution changes, a graph neural architecture search method based on decoupled self-supervised learning is proposed. By customizing an appropriate graph neural network architecture for each graph sample, the adaptability of the graph neural architecture search method to handle data distribution shifts is effectively enhanced. . This work has been published at ICML 2022, a top international conference on machine learning.
Paper address: https://proceedings.mlr.press/v162/qin22b/qin22b.pdf
2. Large-scale graph architecture search
To solve the problem that existing graph neural architecture search cannot handle large-scale graphs, an architecture-subgraph union is proposed. The super-network training method of the sampling mechanism breaks through the consistency bottleneck in the sampling process through importance sampling and peer learning algorithms, greatly improves the efficiency of graph neural architecture search, and achieves for the first time a single machine that can process 100 million Scale real graph data. This work has been published at ICML 2022, a top international conference on machine learning.
Paper address: https://proceedings.mlr.press/v162/guan22d.html
3. Graph neural architecture search evaluation benchmark
In view of the lack of unified evaluation standards for graph neural architecture search and the huge amount of computing resources consumed in the evaluation process, the Zhitu team researched and proposed the graph neural architecture search benchmark NAS-Bench-Graph, which is the first graph neural architecture search benchmark. A tabular benchmark for neural architecture search. This benchmark can efficiently, fairly, and reproducibly compare different graph neural architecture search methods, filling the gap where there is no benchmark for graph data architecture search. NAS-Bench-Graph designed a search space containing 26,206 different graph neural network architectures, using 9 commonly used node classification graph data of different sizes and types, and provided fully trained model effects, which can be used in While ensuring reproducibility and fair comparison, computing resources are greatly reduced. This work has been published at NeurIPS 2022, a top international conference on machine learning.
Project address: https://github.com/THUMNLab/NAS-Bench-Graph
4. Automatic Graph Transformer
In view of the problem that the current manually designed graph Transformer architecture is difficult to achieve the best prediction performance, an automatic graph Transformer architecture search framework is proposed. The unified graph Transformer search space and structure-aware performance evaluation strategy solves the problem that designing the best graph Transformer is time-consuming and difficult to obtain the optimal architecture. This work was published in ICLR 2023, the top international conference on machine learning.
Paper address: https://openreview.net/pdf?id=GcM7qfl5zY
5. Robust graph neural architecture search
Aiming at the problem that current graph neural architecture search cannot handle adversarial attacks, a robust graph neural architecture search method is proposed. By searching Robust graph operators are added to the space and robustness evaluation indicators are proposed during the search process, which enhances the ability of graph neural architecture search to withstand adversarial attacks. This work has been published at CVPR 2023, a top international conference on pattern recognition.
Paper address: https://openaccess.thecvf.com/content/CVPR2023/papers/Xie_Adversarially_Robust_Neural_Architecture_Search_for_Graph_Neural_Networks_CVPR_2023_paper.pdf
6. Self-supervised graph neural architecture search
Existing graph neural architecture search heavily relies on labels as indicators for training and searching architectures, limitations The application of automatic machine learning on graphs in label-deficient scenarios. In response to this problem, the Zhitu team proposed a self-supervised graph neural architecture search method, discovered the potential relationship between the graph factors that drive graph data formation and the optimal neural architecture, and adopted a novel decoupled self-supervised graph neural architecture. The search model realizes effective search for optimal architecture on unlabeled graph data. This work has been accepted into NeurIPS 2023, a top conference on machine learning.
7. Multi-task graph neural architecture search
Targeting existing Graph neural network architecture search cannot take into account the differences in architectural requirements for different tasks. The Zhitu team proposed the first multi-task graph neural network architecture search method. It designs optimal architectures for different graph tasks at the same time and uses course learning to capture the differences between different tasks. The collaborative relationship between them effectively realizes the optimal architecture for customizing different graph tasks. This work has been accepted into NeurIPS 2023, a top conference on machine learning.
Lightweight Intelligent Map
Based on the above research progress, the Intelligent Map team designated an open source platform at CCF GitLink released AutoGL-light, the world's first lightweight graph automatic machine learning open source library. Its overall architecture diagram is shown in Figure 1. The lightweight smart graph mainly has the following characteristics:
Figure 1. Lightweight smart graph framework diagram
Project address: https://gitlink.org.cn/THUMNLab/AutoGL-light
1. Module decoupling
Lightweight Intelligent Graph achieves more convenient support for automatic machine learning pipelines of different graphs through a more comprehensive module decoupling method, allowing modules to be freely added in any step of the machine learning process to meet the needs of User customized needs.
2. Self-customization capability
Lightweight intelligence library supports user-customized graph hyperparameter optimization (HPO ) and graph neural architecture search (NAS). In the graph hyperparameter optimization module, Lightweight Intelligent Graph provides a variety of hyperparameter optimization algorithms and search spaces, and supports users to create their own search spaces by inheriting base classes. In the graph neural architecture search module, the lightweight smart graph implements typical and most advanced search algorithms, and users can easily combine and customize the module design of search spaces, search strategies, and evaluation strategies according to their own needs.
3. Wide range of application fields
The application of lightweight intelligent graphs is not limited to traditional graph machines learning tasks, but further expanded to a wider range of application areas. Currently, the lightweight smart map already supports AI for Science applications such as molecular maps and single-cell omics data. In the future, Lightweight Intelligent Graph hopes to provide the most advanced graph automatic machine learning solutions for graph data in different fields.
4. GitLink Programming Summer Camp
Taking the opportunity of Lightweight Smart Map, the Smart Map team is deeply involved in GitLink Programming Summer Camp (GLCC) is a summer programming activity for college students across the country organized by the CCF Open Source Development Committee (CCF ODC) under the guidance of the CCF China Computer Federation. The two projects of the Zhitu team, "GraphNAS Algorithm Reproduction" and "Application Cases in the Field of Graph Automatic Learning Science", attracted undergraduate and graduate students from more than ten domestic universities to sign up.
During the summer camp, the Zhitu team actively communicated with participating students, and the work progress exceeded expectations. Among them, the GraphNAS algorithm replication project successfully implemented the above-mentioned generalized architecture search outside the graph distribution (ICML'22), large-scale graph architecture search (ICML'22), and automatic graph Transformer (ICLR'23) in lightweight intelligent graphs. ), effectively verifying the flexibility and independent customization capabilities of the lightweight think library.
The Graph Automatic Machine Learning Science Application Project implements graph-based biological information processing algorithms on lightweight intelligent graphs, including the representative algorithms scGNN for single-cell RNA sequencing analysis, MolCLR, a representative algorithm for molecular representation learning, and AutoGNNUQ, a representative algorithm for molecular structure prediction, promote the application of graph automatic machine learning technology in AI for Science. In the GitLink Programming Summer Camp, Lightweight Intelligent Graph not only enriches algorithms and application cases, but also allows participating students to practice open source software development and other skills, cultivate talents in graph automatic machine learning, and contribute to the development of my country's open source ecological construction. own strength.
The Zhitu team comes from the Network and Media Laboratory led by Professor Zhu Wenwu of the Department of Computer Science at Tsinghua University. The core members include assistant professor Wang Xin, postdoctoral fellow Zhang Ziwei, doctoral students Li Haoyang, Qin Yijian, Zhang Zeyang, master student Guan Chaoyu and more than ten people. The project has received strong support from the National Natural Science Foundation of China and the Ministry of Science and Technology.
The above is the detailed content of Tsinghua Zhu Wenwu's team: AutoGL-light, the world's first lightweight automatic machine learning library for graphs in open source. For more information, please follow other related articles on the PHP Chinese website!

ai合并图层的快捷键是“Ctrl+Shift+E”,它的作用是把目前所有处在显示状态的图层合并,在隐藏状态的图层则不作变动。也可以选中要合并的图层,在菜单栏中依次点击“窗口”-“路径查找器”,点击“合并”按钮。

ai橡皮擦擦不掉东西是因为AI是矢量图软件,用橡皮擦不能擦位图的,其解决办法就是用蒙板工具以及钢笔勾好路径再建立蒙板即可实现擦掉东西。

虽然谷歌早在2020年,就在自家的数据中心上部署了当时最强的AI芯片——TPU v4。但直到今年的4月4日,谷歌才首次公布了这台AI超算的技术细节。论文地址:https://arxiv.org/abs/2304.01433相比于TPU v3,TPU v4的性能要高出2.1倍,而在整合4096个芯片之后,超算的性能更是提升了10倍。另外,谷歌还声称,自家芯片要比英伟达A100更快、更节能。与A100对打,速度快1.7倍论文中,谷歌表示,对于规模相当的系统,TPU v4可以提供比英伟达A100强1.

ai可以转成psd格式。转换方法:1、打开Adobe Illustrator软件,依次点击顶部菜单栏的“文件”-“打开”,选择所需的ai文件;2、点击右侧功能面板中的“图层”,点击三杠图标,在弹出的选项中选择“释放到图层(顺序)”;3、依次点击顶部菜单栏的“文件”-“导出”-“导出为”;4、在弹出的“导出”对话框中,将“保存类型”设置为“PSD格式”,点击“导出”即可;

Yann LeCun 这个观点的确有些大胆。 「从现在起 5 年内,没有哪个头脑正常的人会使用自回归模型。」最近,图灵奖得主 Yann LeCun 给一场辩论做了个特别的开场。而他口中的自回归,正是当前爆红的 GPT 家族模型所依赖的学习范式。当然,被 Yann LeCun 指出问题的不只是自回归模型。在他看来,当前整个的机器学习领域都面临巨大挑战。这场辩论的主题为「Do large language models need sensory grounding for meaning and u

ai顶部属性栏不见了的解决办法:1、开启Ai新建画布,进入绘图页面;2、在Ai顶部菜单栏中点击“窗口”;3、在系统弹出的窗口菜单页面中点击“控制”,然后开启“控制”窗口即可显示出属性栏。

ai移动不了东西的解决办法:1、打开ai软件,打开空白文档;2、选择矩形工具,在文档中绘制矩形;3、点击选择工具,移动文档中的矩形;4、点击图层按钮,弹出图层面板对话框,解锁图层;5、点击选择工具,移动矩形即可。

引入密集强化学习,用 AI 验证 AI。 自动驾驶汽车 (AV) 技术的快速发展,使得我们正处于交通革命的风口浪尖,其规模是自一个世纪前汽车问世以来从未见过的。自动驾驶技术具有显着提高交通安全性、机动性和可持续性的潜力,因此引起了工业界、政府机构、专业组织和学术机构的共同关注。过去 20 年里,自动驾驶汽车的发展取得了长足的进步,尤其是随着深度学习的出现更是如此。到 2015 年,开始有公司宣布他们将在 2020 之前量产 AV。不过到目前为止,并且没有 level 4 级别的 AV 可以在市场


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver CS6
Visual web development tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

SublimeText3 English version
Recommended: Win version, supports code prompts!

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment
