How to perform data visualization and exploration in Python
Data visualization and exploration is one of the important aspects of data analysis. In Python, with the help of various powerful libraries and Tools allow us to easily visualize and explore data. This article will introduce commonly used data visualization libraries and techniques in Python, and give specific code examples.
- Introduction
Data visualization is a method of displaying abstract data in an intuitive and easy-to-understand way. Through visualization, we can better understand the distribution, relationships and characteristics of data. There are many libraries and tools for data visualization in Python, such as Matplotlib, Seaborn, Plotly, etc. - Data preparation
Before performing data visualization, you first need to prepare the data to be analyzed. This article takes the Iris data set as an example. The Iris data set is a classic data set in the UCI machine learning library. It contains 150 samples of three varieties of iris flowers (Setosa, Versicolor, and Virginica). Each sample contains Four characteristics (Sepal length, Sepal width, Petal length, Petal width) are included.
First, you need to install the pandas library for data processing and analysis. Then, use the following code to read the Iris data set and prepare for simple data visualization:
import pandas as pd
Read the Iris data set
iris_data = pd.read_csv ('iris.csv')
View the first few rows of the data set
print(iris_data.head())
View the basic information of the data set
print(iris_data.info())
- Single variable data visualization
Single variable data visualization refers to visualizing the distribution of a single variable. Commonly used methods include histograms, histograms, and boxplots.
Taking Sepal length (calyx length) as an example, the code example of using the Matplotlib library to draw a histogram is as follows:
import matplotlib.pyplot as plt
Draw a column Figure
plt.bar(iris_data['Species'], iris_data['Sepal length'])
plt.xlabel('Species') # Set the x-axis label
plt.ylabel(' Sepal length') # Set the y-axis label
plt.title('Distribution of Sepal length') # Set the chart title
plt.show()
In addition, you can also use the Seaborn library to draw the histogram Figures and boxplots. The following is a code example for drawing a histogram:
import seaborn as sns
Drawing a histogram
sns.histplot(data=iris_data, x='Sepal length', kde =True)
plt.xlabel('Sepal length') # Set the x-axis label
plt.ylabel('Count') # Set the y-axis label
plt.title('Distribution of Sepal length') #Set chart title
plt.show()
- Double-variable data visualization
Double-variable data visualization refers to visualizing the relationship between two variables. Commonly used methods include scatter plots and heat maps.
Taking Sepal length and Petal length as an example, the code example for using the Matplotlib library to draw a scatter plot is as follows:
Draw a scatter plot
plt.scatter( iris_data['Sepal length'], iris_data['Petal length'])
plt.xlabel('Sepal length') # Set the x-axis label
plt.ylabel('Petal length') # Set the y-axis label
plt.title('Relationship between Sepal length and Petal length') #Set the chart title
plt.show()
In addition, you can also use the Seaborn library to draw a heat map to show the relationship between variables correlation. The following is a code example for drawing a heat map:
Calculate the correlation coefficient matrix between variables
correlation_matrix = iris_data[['Sepal length', 'Sepal width', 'Petal length', ' Petal width']].corr()
Draw a heat map
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.title('Correlation Matrix ')
plt.show()
- Multivariable data visualization
Multivariable data visualization refers to visualizing the relationship between multiple variables. Commonly used methods include scatter matrices and parallel coordinate plots.
Taking the four features of the Iris data set as an example, the code example of using the Seaborn library to draw the scatter matrix is as follows:
Draw the scatter matrix
sns. pairplot(iris_data, hue='Species')
plt.show()
In addition, you can also use the Plotly library to draw parallel coordinate plots. The following is a code example for drawing parallel coordinate plots:
import plotly.express as px
Draw parallel coordinates graph
fig = px.parallel_coordinates(iris_data, color='Species')
fig.show()
Summary
This article introduces methods for data visualization and exploration in Python and gives specific code examples. Through data visualization and exploration, we can better understand the distribution, relationships, and characteristics of data, thereby providing a foundation and guidance for subsequent data analysis and modeling. In practical applications, appropriate visualization methods and technologies can also be selected based on specific needs and data characteristics to further explore the value of data.
The above is the detailed content of How to do data visualization and exploration in Python. For more information, please follow other related articles on the PHP Chinese website!

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver CS6
Visual web development tools

Notepad++7.3.1
Easy-to-use and free code editor

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 English version
Recommended: Win version, supports code prompts!

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment