


What are the best practices for log handling and debugging techniques in Python?
What are the best practices for log handling and debugging techniques in Python?
In the Python development process, log processing and debugging skills are very important parts. Good logging practices can help us track and analyze the execution of the code and improve the readability and maintainability of the code. At the same time, excellent debugging skills can help us quickly locate and solve problems in the code. This article will introduce several best practices for log handling and debugging techniques in Python and provide specific code examples.
1. Best practices for log processing
- Using standard library logging
The Python standard library provides a logging module, which is a powerful and flexible logging tool. We can use it to record various log information, including debugging information, warning information, error information, etc. Here is a simple example:
import logging # 配置日志记录器 logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') # 记录日志 logging.debug('这是一个调试信息') logging.info('这是一个普通信息') logging.warning('这是一个警告信息') logging.error('这是一个错误信息')
In the above example, we first configured the logger level and output format through the basicConfig method. Then, we can record different levels of log information through methods such as logging.debug, logging.info, logging.warning, and logging.error.
- Use different levels of logs
In actual development, we should use different levels of log information as needed. Generally speaking, debugging information (debug) is used to assist in troubleshooting problems during development, general information (info) is used to record key information during code execution, and warning information (warning) is used to record problems that can be ignored. , error messages (errors) are used to record serious problems in code execution. We can use the corresponding level of log information in the code according to our needs. For example:
if condition: logging.debug('条件满足') else: logging.warning('条件不满足')
- Output the log to the file
In addition to displaying the log information on the console, we can also save it to a file for subsequent viewing and analyze. We can achieve this by configuring the handlers attribute of the logging module. The following is a simple example:
import logging # 配置日志记录器 logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s', filename='app.log', filemode='w') # 记录日志 logging.debug('这是一个调试信息') logging.info('这是一个普通信息')
In the above example, we specify the name of the log file through filename and the method of writing the file through filemode. In this way, the log information will be written to the specified file.
2. Best practices for debugging techniques
- Use assertions
Assertions are a common debugging technique that can help us verify the code. Assumptions. In Python, we can use the assert statement to make assertions. For example:
def divide(x, y): assert y != 0, '除数不能为零' return x / y
In the above example, we use the assert statement to determine whether the divisor y is zero. If it is zero, an AssertionError exception will be thrown and a custom error message will be displayed.
- Using the pdb debugger
The Python standard library provides the pdb module, which is a built-in debugger that can help us debug the code line by line. We can insert pdb calls into the code for debugging. For example:
import pdb def divide(x, y): pdb.set_trace() return x / y
In the above example, we used pdb.set_trace() to insert a breakpoint in the code, and the pdb debugger will be automatically entered when the program is executed here. We can use various commands in the debugger to view and debug the code.
- Use logs to assist debugging
In addition to using assertions and the pdb debugger, we can also use logs to assist in debugging code. By recording log information at key locations, we can understand the execution of the code and better troubleshoot and solve problems. For example:
import logging def divide(x, y): try: result = x / y except Exception as e: logging.exception('除法运算异常') else: logging.info('除法运算结果:{}'.format(result)) return result
In the above example, we used logging.exception to record exception information in the exception handling block, and used logging.info to record the operation results under normal circumstances. In this way, we can check the log to understand whether there are exceptions during code execution.
To sum up, the best practice for log processing and debugging skills in Python is to use standard library logging for logging, and use different types of log information according to different levels of requirements. At the same time, we can also improve the debuggability and readability of the code through techniques such as assertions, pdb debugger, and log-assisted debugging. These best practices can help us better track and analyze code execution and improve code quality and maintainability.
The above is the detailed content of What are the best practices for log handling and debugging techniques in Python?. For more information, please follow other related articles on the PHP Chinese website!

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

How to avoid being detected when using FiddlerEverywhere for man-in-the-middle readings When you use FiddlerEverywhere...


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 English version
Recommended: Win version, supports code prompts!

SublimeText3 Mac version
God-level code editing software (SublimeText3)