search
HomeBackend DevelopmentPython TutorialWhat is the principle of memory management in Python?
What is the principle of memory management in Python?Oct 18, 2023 am 10:42 AM
Memory management principlespython memory managementMemory allocation strategy

What is the principle of memory management in Python?

What is the principle of memory management in Python?

Python is a high-level, dynamically typed programming language with automatic garbage collection. The principle of Python memory management is based on the reference counting mechanism and garbage collection mechanism.

The reference counting mechanism is the basis of Python memory management. Each object has a reference counter that records the number of times the object is referenced. When an object is created, its reference counter is initialized to 1. When an object is referenced, its reference counter is incremented by 1. Conversely, when an object's reference becomes invalid, its reference counter is decremented by one. When the reference counter of an object becomes 0, it means that the object is not referenced, and Python will automatically recycle it and release the memory.

The garbage collection mechanism is a supplement to Python memory management. Although reference counting can effectively reclaim most objects that are no longer used, it can lead to circular reference problems. A circular reference occurs when two objects refer to each other and there are no external references between the two objects. In this case, the object's reference count will never reach 0, causing a memory leak. To solve this problem, Python introduced a garbage collection mechanism.

In Python's garbage collection mechanism, the garbage collection algorithm will be executed regularly. By checking the reference relationships of objects, objects that are no longer referenced will be found and recycled. Python's garbage collection algorithms mainly include mark sweep and generational collection.

The mark-and-sweep algorithm is a simple and effective garbage collection algorithm. It works by starting from the root object, marking all accessible objects, and then clearing all unmarked objects. This allows you to recycle all objects that are no longer referenced.

The generational collection algorithm is a more efficient garbage collection algorithm. It is based on the observation that "young objects are likely to be recycled quickly, while old objects are likely to persist for a long time". Generational recycling divides memory into different generations, and each generation has different recycling strategies. Newly created objects are allocated in the young generation, and objects that are still active after multiple collections are promoted to the old generation. This can reduce the frequency of garbage collection and improve efficiency.

The following is a code example that shows the memory management principle in Python:

class Person:
    def __init__(self, name):
        self.name = name

p1 = Person("Tom")  # 创建一个Person对象,引用计数器为1
p2 = p1  # p2引用p1,引用计数器增加为2
p3 = p1  # p3引用p1,引用计数器增加为3

del p1  # p1的引用失效,引用计数器减少为2
del p2  # p2的引用失效,引用计数器减少为1
del p3  # p3的引用失效,引用计数器减少为0,对象回收

# 在这个例子中,当p3的引用失效时,对象就被自动回收,释放内存

In summary, Python's memory management principle is based on the reference counting mechanism and garbage collection mechanism. The reference counting mechanism records the number of times an object is referenced through a reference counter. When the reference counter reaches 0, the object is recycled. The garbage collection mechanism solves the problem of circular references. Through a periodic recycling algorithm, objects that are no longer referenced are found and recycled. This ensures Python's memory usage efficiency and stability.

The above is the detailed content of What is the principle of memory management in Python?. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How to solve the permissions problem encountered when viewing Python version in Linux terminal?How to solve the permissions problem encountered when viewing Python version in Linux terminal?Apr 01, 2025 pm 05:09 PM

Solution to permission issues when viewing Python version in Linux terminal When you try to view Python version in Linux terminal, enter python...

How Do I Use Beautiful Soup to Parse HTML?How Do I Use Beautiful Soup to Parse HTML?Mar 10, 2025 pm 06:54 PM

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Mathematical Modules in Python: StatisticsMathematical Modules in Python: StatisticsMar 09, 2025 am 11:40 AM

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

How to Perform Deep Learning with TensorFlow or PyTorch?How to Perform Deep Learning with TensorFlow or PyTorch?Mar 10, 2025 pm 06:52 PM

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

How to efficiently copy the entire column of one DataFrame into another DataFrame with different structures in Python?How to efficiently copy the entire column of one DataFrame into another DataFrame with different structures in Python?Apr 01, 2025 pm 11:15 PM

When using Python's pandas library, how to copy whole columns between two DataFrames with different structures is a common problem. Suppose we have two Dats...

How to Create Command-Line Interfaces (CLIs) with Python?How to Create Command-Line Interfaces (CLIs) with Python?Mar 10, 2025 pm 06:48 PM

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

What are some popular Python libraries and their uses?What are some popular Python libraries and their uses?Mar 21, 2025 pm 06:46 PM

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

Explain the purpose of virtual environments in Python.Explain the purpose of virtual environments in Python.Mar 19, 2025 pm 02:27 PM

The article discusses the role of virtual environments in Python, focusing on managing project dependencies and avoiding conflicts. It details their creation, activation, and benefits in improving project management and reducing dependency issues.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.