search
HomeTechnology peripheralsAIMcKinsey partner: Generative AI helps solve various challenges in cloud migration

McKinsey partner: Generative AI helps solve various challenges in cloud migration

McKinsey & Company partner Bhargs Srivathsan said at a recent conference in Singapore that as long as it is used properly, generative AI technology is expected to reduce cloud migration workload by 30% to 50%.

Srivathsan believes that “the current progress can only be said to have just taken the first step. As the large language model (LLM) matures, the timetable for migrating workloads to the public cloud will continue to shorten, The efficiency of the migration process can also be improved accordingly."

She suggested that organizations first use a large language model to understand the infrastructure in the system, analyze the shortcomings and advantages, and then continue to apply it after the workload transfer is completed. AI tools see if the migration is actually effective.

In addition, you can also use large language models to complete more related work, such as writing explanatory materials such as architectural review committee guidelines.

The partner said that although many companies have just begun to consider adopting AI technology, 40% of the companies invested by McKinsey are already updating their IT investments.

Srivathsan believes that the relationship between generative AI and the cloud is "symbiotic".

“It must be admitted that without the popularization of public cloud, it would be impossible to truly bring generative AI into life. Correspondingly, generative AI can also effectively accelerate public cloud migration and help users migrate from the original There is a public cloud to unlock the separation.”

In Srivathsan’s view, the four core use cases of generative AI are content generation, customer engagement, creating synthetic data, and writing code. Of course, writing code here is not about completing software development from scratch. The coding ability of generative AI is mainly reflected in taking over legacy codes that no one is familiar with after employees leave, or converting original codes into new language forms.

She also emphasized that the reason why public cloud is more reliable than trying to build an internal model is because enterprise users often do not have sufficient GPU reserves. Moreover, the cost of ready-made commercial models on the market is also cheaper than self-training.

Srivathsan pointed out that corresponding guardrails can also be set up for users who are in regulated industries, have large amounts of proprietary data, or are worried about intellectual property rights being infringed.

In her opinion, large language models will mainly run in ultra-large-scale infrastructure environments in the next five or six years until the models mature. And unlike what many people imagine, the implementation of generative AI does not necessarily require such exaggerated computing power reserves. After all, there are few use cases that place such stringent requirements on latency.

In other words, unless it is the autopilot function running on Tesla, or the software responsible for directing the real-time operation of the manufacturing workshop, there is really no need to pile up the hardware too much.

Also, in most cases there is no need to use custom or large-scale models.

The McKinsey partner commented, “Many companies think they need to buy a supercar to deliver pizza. Of course, they don’t need to. Models that really meet the needs are often less complex and not that big. For example For example, there is definitely no need to use a large model with 65 billion parameters to generate customer service support scripts."

But she also gave suggestions that if developers are accessing non-proprietary models or models that they should not have access to, data, it is necessary to add an API gateway between inside and outside the organization to establish a "real-time alert" mechanism.

The above is the detailed content of McKinsey partner: Generative AI helps solve various challenges in cloud migration. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
华裔数学家陶哲轩领导白宫生成式AI工作组,李飞飞将在小组演讲华裔数学家陶哲轩领导白宫生成式AI工作组,李飞飞将在小组演讲May 25, 2023 am 10:36 AM

·美国总统科技顾问委员会成立的生成式AI工作组旨在帮助评估人工智能领域的关键机遇和风险,并就尽可能确保公平、安全、负责地开发和部署这些技术向美国总统提供意见。·AMD的首席执行官苏姿丰(LisaSu)和谷歌云首席信息安全官菲尔·维纳布尔斯(PhilVenables)也是这个工作组的成员。华裔数学家、菲尔茨奖获得者陶哲轩。当地时间5月13日,华裔数学家、菲尔茨奖获得者陶哲轩公布消息,他和物理学家劳拉·格林(LauraGreene)共同领导美国总统科技顾问委员会(PCAST)的生成式人工智能工作组。

从“人+RPA”到“人+生成式AI+RPA”,LLM如何影响RPA人机交互?从“人+RPA”到“人+生成式AI+RPA”,LLM如何影响RPA人机交互?Jun 05, 2023 pm 12:30 PM

图片来源@视觉中国文|王吉伟从“人+RPA”到“人+生成式AI+RPA”,LLM如何影响RPA人机交互?换个角度,从人机交互看LLM如何影响RPA?影响程序开发与流程自动化人机交互的RPA,现在也要被LLM改变了?LLM如何影响人机交互?生成式AI怎么改变RPA人机交互?一文看明白:大模型时代来临,基于LLM的生成式AI正在快速变革RPA人机交互;生成式AI重新定义人机交互,LLM正在影响RPA软件架构变迁。如果问RPA对程序开发以及自动化有哪些贡献,其中一个答案便是它改变了人机交互(HCI,h

告别设计软件一句话生成效果图,生成式AI颠覆装饰装修领域,附28款流行工具告别设计软件一句话生成效果图,生成式AI颠覆装饰装修领域,附28款流行工具Jun 10, 2023 pm 03:33 PM

▲本图由AI生成酷家乐、三维家、东易日盛等已出手,装饰装修产业链大举引入AIGC生成式AI在装饰装修领域有哪些应用?对设计师有啥影响?一文看懂告别各种设计软件一句话生成效果图,生成式AI正颠覆装饰装修领域使用人工智能增强能力提升设计效率,生成式AI变革装饰装修行业生成式AI对装饰装修行业有哪些影响?未来发展趋势如何?一文看懂LLM变革装饰装修,这28款流行生成式AI装修设计工具值得上手体验文/王吉伟在装饰装修领域,最近与AIGC关联的消息着实不少。Collov推出了生成式AI驱动的设计工具Col

观察:将生成式AI应用于网络自动化有何潜力?观察:将生成式AI应用于网络自动化有何潜力?Aug 17, 2023 pm 07:57 PM

根据市场研究公司Omdia的一份最新报告,预计到2023年,生成式人工智能(GenAI)将成为一个引人注目的技术趋势,为企业和个人带来重要的应用,包括教育。在电信领域,GenAI的用例主要集中在提供个性化营销内容或支持更复杂的虚拟助手,以提升客户体验尽管生成式AI在网络运营中的应用并不明显,但EnterpriseWeb进行了一项有趣的概念验证,展示了该领域中生成式AI的潜力生成式AI在网络自动化方面的能力和限制生成式AI在网络运营中的早期应用之一是利用交互式指导替代工程手册来帮助安装网络元件,从

微软和西门子联手将生成式AI引入制造业,可让仿真时间从数周缩短到几分钟微软和西门子联手将生成式AI引入制造业,可让仿真时间从数周缩短到几分钟Nov 01, 2023 pm 08:17 PM

11月1日消息,微软和西门子宣布加深在生成式人工智能(AI)领域的合作,并将其应用于全球各行各业。为了实现人机协作的革命性突破,两家公司推出了西门子工业Copilot,这是一款联合开发的人工智能助手,旨在提高制造业的生产力。通过利用微软的AzureOpenAI服务,结合西门子工业的专业技术和Xcelerator平台的数据,西门子工业Copilot可以轻松生成、优化和调试复杂的自动化代码,实现自然语言交互。两家公司表示,这项技术可以将一些耗时数周的任务缩短到几分钟,例如仿真过程IT之家注意到,Co

小公司部署生成式AI大模型的比例是中型公司的3倍,调查揭示小公司部署生成式AI大模型的比例是中型公司的3倍,调查揭示Oct 15, 2023 pm 05:21 PM

在过度炒作了Web3、虚拟世界和区块链等一系列技术之后,企业高管们正在准备迎接生成式人工智能的浪潮。有人认为,人工智能带来的变革将与互联网的诞生或台式电脑的出现相媲美但能力越大,责任越大。生成式人工智能带来的风险与回报一样多。这项技术正在挑战版权和知识产权方面的法律制度,创造新的网络和数据治理威胁,并在劳动密集的活动中引发了“自动化焦虑”。为了满足利益相关者的期望,公司需要迅速采取行动,但必须谨慎行事,以确保在数据隐私和偏见等领域不违反法规或道德标准在运营方面,企业需要重新配置人力资源,并与科技

红帽全球峰会:生成式AI令人期待,开源领域迎来好时机红帽全球峰会:生成式AI令人期待,开源领域迎来好时机Jun 06, 2023 am 08:06 AM

作为全球开源领域一年一度的行业盛宴,2023红帽全球峰会于近日如约而至。红帽带来全球开源盛宴在本届峰会上,红帽发布了最新版的OpenShiftAI、搭载IBMWatsonCodeAssistant的AnsibleLightspeed等一系列新品,并且针对媒体记者最为关心的热点话题分享了红帽的观点与看法。红帽总裁兼CEOMattHicks表示:“我们对未来充满了激动和期待,特别是在人工智能和新技术方面。我们发布了一些令人兴奋的新产品,其中包括OpenShiftAI。然而要实现这一愿景,我们还需要注

生成式AI爆发,亚马逊云科技持续专注创新,助力企业数字化转型生成式AI爆发,亚马逊云科技持续专注创新,助力企业数字化转型Jul 13, 2023 pm 08:54 PM

2023年的科技圈什么技术最火,毫无疑问,回答都会指向生成式AI。生成式AI的到来引发了业内外广泛讨论,也引发了大家对AI发展的新一轮思考——未来几年,生成式AI会成为最重要的生产力工具,无论是训练还是推理端,算力需求都将有望爆发式增长。在6月28日举行的2023年亚马逊云科技中国峰会上,亚马逊云科技大中华区产品部总经理陈晓建发表了名为《专注创新,摆脱基础架构束缚》的主题演讲,他认为,“当前,虽然生成式AI只有短短几个月,但其超大规模人工智能模型和海量数据对高算力提出新要求,不断拉动算力需求快速

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.