search
HomeTechnology peripheralsAIIn image and video generation, the language model defeated the diffusion model for the first time, and tokenizer is the key

Large-scale language models (LLM or LM) were originally used to generate language, but over time they have been able to generate content in multiple modalities and have found applications in audio, speech, code generation, medical applications, Fields like robotics are starting to dominate

Of course, LM can also generate images and videos. During this process, image pixels are mapped into a series of discrete tokens by the visual tokenizer. These tokens are then fed into the LM transformer and used like vocabularies for generative modeling. Despite significant progress in visual generation, LM still performs worse than diffusion models. For example, when evaluated on the ImageNet dataset, the gold standard benchmark for image generation, the best language model performed a whopping 48% worse than the diffusion model (FID 3.41 vs. 1.79 when generating images at 256ˆ256 resolution).

Why do language models lag behind diffusion models in visual generation? Researchers from Google and CMU believe that the main reason is the lack of a good visual representation, similar to our natural language system, to effectively model the visual world. To confirm this hypothesis, they conducted a study.

In image and video generation, the language model defeated the diffusion model for the first time, and tokenizer is the key

Paper link: https://arxiv.org/pdf/2310.05737.pdf

This The study shows that with the same training data, comparable model size and training budget, using a good visual tokenizer, masked language models surpass SOTA diffusion models in both generation fidelity and efficiency on image and video benchmarks. This is the first evidence that a language model beats a diffusion model on the iconic ImageNet benchmark.

It should be emphasized that the purpose of the researchers is not to assert whether the language model is better than other models, but to promote the exploration of LLM visual tokenization methods. The fundamental difference between LLM and other models (such as diffusion models) is that LLM uses discrete latent formats, i.e. tokens obtained from a visual tokenizer. This research shows that the value of these discrete visual tokens should not be ignored because of their following advantages:

1. Compatibility with LLM. The main advantage of the token representation is that it shares the same form as the language token, thereby directly leveraging the optimizations the community has made over the years to develop LLM, including faster training and inference speeds, advances in model infrastructure, ways to extend the model, and Innovations such as GPU/TPU optimization. Unifying vision and language through the same token space could lay the foundation for truly multimodal LLMs that can understand, generate, and reason within our visual environments.

2. Compressed representation. Discrete tokens can provide a new perspective on video compression. Visual tokens can be used as a new video compression format to reduce the disk storage and bandwidth occupied by data during Internet transmission. Unlike compressed RGB pixels, these tokens can be fed directly into the generative model, bypassing traditional decompression and latent encoding steps. This can speed up the processing of video-generating applications and is especially beneficial in edge computing situations.

3. Advantages of visual understanding. Previous research has shown the value of discrete labels as pre-training targets in self-supervised representation learning, as discussed in BEiT and BEVT. In addition, the study found that using markers as model inputs can improve its robustness and generalization performance

In this paper, the researchers proposed a model called MAGVIT-v2 A video tokenizer designed to convert videos (and images) into compact discrete tokens

This content is rewritten as follows: The model is based on the SOTA video tokenizer within the VQ-VAE framework ——Improvements made by MAGVIT. The researchers proposed two new technologies: 1) an innovative lookup-free quantification method that allows learning a large vocabulary, thereby improving the quality of language model generation; 2) through extensive empirical analysis, they determined Modifications to MAGVIT not only improve the generation quality, but also allow images and videos to be tokenized using a shared vocabulary

Experimental results show that the new model outperforms in three key areas The best performing video tokenizer before - MAGVIT. First, the new model significantly improves MAGVIT’s generation quality, achieving state-of-the-art results on common image and video benchmarks. Second, user studies show that its compression quality exceeds MAGVIT and the current video compression standard HEVC. Furthermore, it is comparable to the next-generation video codec VVC. Finally, the researchers show that their new word segmentation performs better than MAGVIT on video understanding tasks in two settings and three datasets

Method introduction

This paper introduces a new video tokenizer, aiming to map the time-space dynamics in the visual scene into compact discrete tokens suitable for language models . Furthermore, the method builds on MAGVIT.

The study then highlights two novel designs: Lookup-Free Quantization (LFQ) and enhancements to the tokenizer model.

Lookup-free quantification

Recently, the VQ-VAE model has made great progress, but there is a problem with this method The problem is that the relationship between improvements in reconstruction quality and subsequent generation quality is unclear. Many people mistakenly believe that improving reconstruction is equivalent to improving language model generation, for example, expanding the vocabulary can improve the quality of reconstruction. However, this improvement only applies to generation with a small vocabulary, and when the vocabulary is very large, it will harm the performance of the language model

This article reduces the VQ-VAE codebook embedding dimension to 0, that is, Codebook In image and video generation, the language model defeated the diffusion model for the first time, and tokenizer is the key is replaced by an integer set In image and video generation, the language model defeated the diffusion model for the first time, and tokenizer is the key where In image and video generation, the language model defeated the diffusion model for the first time, and tokenizer is the key.

Unlike the VQ-VAE model, this new design completely eliminates the need for embedded lookups, hence the name LFQ. This paper finds that LFQ can improve the quality of language model generation by increasing vocabulary. As shown by the blue curve in Figure 1, both reconstruction and generation improve as vocabulary size increases—a property not observed in current VQ-VAE methods.

In image and video generation, the language model defeated the diffusion model for the first time, and tokenizer is the key

There are many LFQ methods available so far, but this article discusses a simple variant. Specifically, the latent space of LFQ is decomposed into the Cartesian product of single-dimensional variables, that is, In image and video generation, the language model defeated the diffusion model for the first time, and tokenizer is the key. Assuming that given a feature vector In image and video generation, the language model defeated the diffusion model for the first time, and tokenizer is the key, each dimension of the quantified representation q (z) is obtained from:

In image and video generation, the language model defeated the diffusion model for the first time, and tokenizer is the key

With respect to LFQ, q ( The token index of z) is:

In image and video generation, the language model defeated the diffusion model for the first time, and tokenizer is the key

In addition, this article also adds an entropy penalty during the training process:

In image and video generation, the language model defeated the diffusion model for the first time, and tokenizer is the key

Improvements of the visual tokenizer model

In order to build a joint image-video tokenizer, a redesign is required. The study found that compared with the spatial transformer, the performance of 3D CNN is better

This paper explores two feasible design solutions, as shown in Figure 2b, which combines C-ViViT and MAGVIT; Figure 2c uses temporal causal 3D convolution instead of regular 3D CNN.

In image and video generation, the language model defeated the diffusion model for the first time, and tokenizer is the key

Table 5a empirically compares the designs in Figure 2 and finds that the causal 3D CNN performs best.

In image and video generation, the language model defeated the diffusion model for the first time, and tokenizer is the key

This article makes other architectural modifications to improve MAGVIT performance. In addition to using causal 3D CNN layers, this paper also changes the encoder downsampler from average pooling to strided convolution and adds an adaptive group normalization before the residual block at each resolution in the decoder. Layer etc

Experimental results

This paper verifies the performance of the proposed word segmenter through three parts of experiments: video and image generation, Video compression and action recognition. Figure 3 visually compares the tokenizer with the results of previous research

In image and video generation, the language model defeated the diffusion model for the first time, and tokenizer is the key

video generation. Table 1 shows that our model outperforms all existing techniques on both benchmarks, demonstrating that a good visual tokenizer plays an important role in enabling LM to generate high-quality videos.

In image and video generation, the language model defeated the diffusion model for the first time, and tokenizer is the key

The following is a description of the qualitative sample in Figure 4

In image and video generation, the language model defeated the diffusion model for the first time, and tokenizer is the key

By evaluating the image generation results of MAGVIT-v2, this study found that our model exceeded the best in terms of sampling quality (ID and IS) and inference time efficiency (sampling step) under standard ImageNet-like condition settings. The performance of the best diffusion model

In image and video generation, the language model defeated the diffusion model for the first time, and tokenizer is the key

# Figure 5 shows the visualization results.

In image and video generation, the language model defeated the diffusion model for the first time, and tokenizer is the key

Video compression. The results are shown in Table 3. Our model outperforms MAGVIT on all indicators and outperforms all methods on LPIPS.

In image and video generation, the language model defeated the diffusion model for the first time, and tokenizer is the key

As shown in Table 4, MAGVIT-v2 outperforms the previous best MAGVIT

## in these evaluations

In image and video generation, the language model defeated the diffusion model for the first time, and tokenizer is the key#

The above is the detailed content of In image and video generation, the language model defeated the diffusion model for the first time, and tokenizer is the key. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
Can't use ChatGPT! Explaining the causes and solutions that can be tested immediately [Latest 2025]Can't use ChatGPT! Explaining the causes and solutions that can be tested immediately [Latest 2025]May 14, 2025 am 05:04 AM

ChatGPT is not accessible? This article provides a variety of practical solutions! Many users may encounter problems such as inaccessibility or slow response when using ChatGPT on a daily basis. This article will guide you to solve these problems step by step based on different situations. Causes of ChatGPT's inaccessibility and preliminary troubleshooting First, we need to determine whether the problem lies in the OpenAI server side, or the user's own network or device problems. Please follow the steps below to troubleshoot: Step 1: Check the official status of OpenAI Visit the OpenAI Status page (status.openai.com) to see if the ChatGPT service is running normally. If a red or yellow alarm is displayed, it means Open

Calculating The Risk Of ASI Starts With Human MindsCalculating The Risk Of ASI Starts With Human MindsMay 14, 2025 am 05:02 AM

On 10 May 2025, MIT physicist Max Tegmark told The Guardian that AI labs should emulate Oppenheimer’s Trinity-test calculus before releasing Artificial Super-Intelligence. “My assessment is that the 'Compton constant', the probability that a race to

An easy-to-understand explanation of how to write and compose lyrics and recommended tools in ChatGPTAn easy-to-understand explanation of how to write and compose lyrics and recommended tools in ChatGPTMay 14, 2025 am 05:01 AM

AI music creation technology is changing with each passing day. This article will use AI models such as ChatGPT as an example to explain in detail how to use AI to assist music creation, and explain it with actual cases. We will introduce how to create music through SunoAI, AI jukebox on Hugging Face, and Python's Music21 library. Through these technologies, everyone can easily create original music. However, it should be noted that the copyright issue of AI-generated content cannot be ignored, and you must be cautious when using it. Let’s explore the infinite possibilities of AI in the music field together! OpenAI's latest AI agent "OpenAI Deep Research" introduces: [ChatGPT]Ope

What is ChatGPT-4? A thorough explanation of what you can do, the pricing, and the differences from GPT-3.5!What is ChatGPT-4? A thorough explanation of what you can do, the pricing, and the differences from GPT-3.5!May 14, 2025 am 05:00 AM

The emergence of ChatGPT-4 has greatly expanded the possibility of AI applications. Compared with GPT-3.5, ChatGPT-4 has significantly improved. It has powerful context comprehension capabilities and can also recognize and generate images. It is a universal AI assistant. It has shown great potential in many fields such as improving business efficiency and assisting creation. However, at the same time, we must also pay attention to the precautions in its use. This article will explain the characteristics of ChatGPT-4 in detail and introduce effective usage methods for different scenarios. The article contains skills to make full use of the latest AI technologies, please refer to it. OpenAI's latest AI agent, please click the link below for details of "OpenAI Deep Research"

Explaining how to use the ChatGPT app! Japanese support and voice conversation functionExplaining how to use the ChatGPT app! Japanese support and voice conversation functionMay 14, 2025 am 04:59 AM

ChatGPT App: Unleash your creativity with the AI ​​assistant! Beginner's Guide The ChatGPT app is an innovative AI assistant that handles a wide range of tasks, including writing, translation, and question answering. It is a tool with endless possibilities that is useful for creative activities and information gathering. In this article, we will explain in an easy-to-understand way for beginners, from how to install the ChatGPT smartphone app, to the features unique to apps such as voice input functions and plugins, as well as the points to keep in mind when using the app. We'll also be taking a closer look at plugin restrictions and device-to-device configuration synchronization

How do I use the Chinese version of ChatGPT? Explanation of registration procedures and feesHow do I use the Chinese version of ChatGPT? Explanation of registration procedures and feesMay 14, 2025 am 04:56 AM

ChatGPT Chinese version: Unlock new experience of Chinese AI dialogue ChatGPT is popular all over the world, did you know it also offers a Chinese version? This powerful AI tool not only supports daily conversations, but also handles professional content and is compatible with Simplified and Traditional Chinese. Whether it is a user in China or a friend who is learning Chinese, you can benefit from it. This article will introduce in detail how to use ChatGPT Chinese version, including account settings, Chinese prompt word input, filter use, and selection of different packages, and analyze potential risks and response strategies. In addition, we will also compare ChatGPT Chinese version with other Chinese AI tools to help you better understand its advantages and application scenarios. OpenAI's latest AI intelligence

5 AI Agent Myths You Need To Stop Believing Now5 AI Agent Myths You Need To Stop Believing NowMay 14, 2025 am 04:54 AM

These can be thought of as the next leap forward in the field of generative AI, which gave us ChatGPT and other large-language-model chatbots. Rather than simply answering questions or generating information, they can take action on our behalf, inter

An easy-to-understand explanation of the illegality of creating and managing multiple accounts using ChatGPTAn easy-to-understand explanation of the illegality of creating and managing multiple accounts using ChatGPTMay 14, 2025 am 04:50 AM

Efficient multiple account management techniques using ChatGPT | A thorough explanation of how to use business and private life! ChatGPT is used in a variety of situations, but some people may be worried about managing multiple accounts. This article will explain in detail how to create multiple accounts for ChatGPT, what to do when using it, and how to operate it safely and efficiently. We also cover important points such as the difference in business and private use, and complying with OpenAI's terms of use, and provide a guide to help you safely utilize multiple accounts. OpenAI

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool