Home > Article > Technology peripherals > Rotation invariance problem in image recognition
The issue of rotation invariance in image recognition
Abstract: In image recognition tasks, the rotation invariance of images is an important issue. In order to solve this problem, this article introduces a method based on convolutional neural network (CNN) and gives specific code examples.
import numpy as np import tensorflow as tf # 构建CNN模型 model = tf.keras.Sequential([ tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)), tf.keras.layers.MaxPooling2D((2, 2)), tf.keras.layers.Conv2D(64, (3, 3), activation='relu'), tf.keras.layers.MaxPooling2D((2, 2)), tf.keras.layers.Flatten(), tf.keras.layers.Dense(64, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation='softmax') ]) # 加载训练数据 (x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data() # 数据预处理 x_train = x_train / 255.0 x_test = x_test / 255.0 # 训练模型 model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) model.fit(x_train, y_train, epochs=10) # 旋转测试图像 test_image = np.array([[0.5, 0.5, 0.5], [0.5, 0.5, 0.5], [0.5, 0.5, 0.5]]) rotated_image = tf.image.rot90(test_image) # 预测图像 predictions = model.predict(np.expand_dims(rotated_image, 0)) print(predictions)
References:
[1] Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60(2), 91-110.
[2] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.
Keywords: Image recognition; Rotation invariance; convolutional neural network; code example
The above is the detailed content of Rotation invariance problem in image recognition. For more information, please follow other related articles on the PHP Chinese website!