Home > Article > Technology peripherals > The impact of data set sampling strategy on model performance
The impact of data set sampling strategy on model performance requires specific code examples
With the rapid development of machine learning and deep learning, the quality and scale of the data set The impact on model performance is becoming increasingly important. In practical applications, we often face problems such as excessive data set size, unbalanced sample categories, and sample noise. At this time, a reasonable choice of sampling strategy can improve the performance and generalization ability of the model. This article will discuss the impact of different data set sampling strategies on model performance through specific code examples.
import numpy as np def random_sampling(X, y, sample_ratio): num_samples = int(sample_ratio * X.shape[0]) indices = np.random.choice(X.shape[0], num_samples, replace=False) X_sampled = X[indices] y_sampled = y[indices] return X_sampled, y_sampled
from sklearn.model_selection import train_test_split from sklearn.utils import resample def stratified_sampling(X, y, sample_ratio): X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, test_size=1-sample_ratio) X_sampled, y_sampled = resample(X_train, y_train, n_samples=int(sample_ratio * X.shape[0])) return X_sampled, y_sampled
from sklearn.svm import OneClassSVM def margin_sampling(X, y, sample_ratio): clf = OneClassSVM(gamma='scale') clf.fit(X) y_pred = clf.predict(X) reliable_samples = X[y_pred == 1] num_samples = int(sample_ratio * X.shape[0]) indices = np.random.choice(reliable_samples.shape[0], num_samples, replace=False) X_sampled = reliable_samples[indices] y_sampled = y[indices] return X_sampled, y_sampled
In summary, different data set sampling strategies have different impacts on model performance. Random sampling can easily and quickly obtain the training set, but it may lead to unbalanced sample categories; stratified sampling can maintain the balance of sample categories and improve the model's ability to handle minority categories; edge sampling can filter out noisy samples and improve the robustness of the model sex. In practical applications, we need to choose an appropriate sampling strategy based on specific problems, and select the optimal strategy through experiments and evaluations to improve the performance and generalization ability of the model.
The above is the detailed content of The impact of data set sampling strategy on model performance. For more information, please follow other related articles on the PHP Chinese website!