The impact of data scarcity on model training
The impact of data scarcity on model training requires specific code examples
In the fields of machine learning and artificial intelligence, data is one of the core elements of training models. However, a problem we often face in reality is data scarcity. Data scarcity refers to the insufficient amount of training data or the lack of annotated data. In this case, it will have a certain impact on model training.
The problem of data scarcity is mainly reflected in the following aspects:
- Overfitting: When the amount of training data is insufficient, the model is prone to overfitting. Overfitting means that the model overly adapts to the training data and cannot generalize well to new data. This is because the model does not have enough data samples to learn the distribution and characteristics of the data, causing the model to produce inaccurate prediction results.
- Underfitting: Compared with overfitting, underfitting means that the model cannot fit the training data well. This is because the amount of training data is insufficient to cover the diversity of the data, resulting in the model being unable to capture the complexity of the data. Underfitted models often fail to provide accurate predictions.
How to solve the problem of data scarcity and improve the performance of the model? The following are some commonly used methods and code examples:
- Data augmentation (Data Augmentation) is a common method to increase the number of training samples by transforming or expanding existing data. Common data enhancement methods include image rotation, flipping, scaling, cropping, etc. The following is a simple image rotation code example:
from PIL import Image def rotate_image(image, angle): rotated_image = image.rotate(angle) return rotated_image image = Image.open('image.jpg') rotated_image = rotate_image(image, 90) rotated_image.save('rotated_image.jpg')
- Transfer learning (Transfer Learning) uses already trained models to solve new problems. By using already learned features from existing models, better training can be performed on scarce data sets. The following is a code example of transfer learning:
from keras.applications import VGG16 from keras.models import Model base_model = VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3)) x = base_model.output x = GlobalAveragePooling2D()(x) x = Dense(1024, activation='relu')(x) predictions = Dense(num_classes, activation='softmax')(x) model = Model(inputs=base_model.input, outputs=predictions) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
- Domain Adaptation (Domain Adaptation) is a method of transferring knowledge from the source domain to the target domain. Better generalization capabilities can be obtained by using some domain-adaptive techniques, such as self-supervised learning, domain adversarial networks, etc. The following is a code example of domain adaptation:
import torch import torchvision import torch.nn as nn source_model = torchvision.models.resnet50(pretrained=True) target_model = torchvision.models.resnet50(pretrained=False) for param in source_model.parameters(): param.requires_grad = False source_features = source_model.features(x) target_features = target_model.features(x) class DANNClassifier(nn.Module): def __init__(self, num_classes): super(DANNClassifier, self).__init__() self.fc = nn.Linear(2048, num_classes) def forward(self, x): x = self.fc(x) return x source_classifier = DANNClassifier(num_classes) target_classifier = DANNClassifier(num_classes) source_outputs = source_classifier(source_features) target_outputs = target_classifier(target_features)
Data scarcity has a non-negligible impact on model training. Through methods such as data augmentation, transfer learning, and domain adaptation, we can effectively solve the problem of data scarcity and improve the performance and generalization ability of the model. In practical applications, we should choose appropriate methods based on specific problems and data characteristics to obtain better results.
The above is the detailed content of The impact of data scarcity on model training. For more information, please follow other related articles on the PHP Chinese website!

Large language models (LLMs) have surged in popularity, with the tool-calling feature dramatically expanding their capabilities beyond simple text generation. Now, LLMs can handle complex automation tasks such as dynamic UI creation and autonomous a

Can a video game ease anxiety, build focus, or support a child with ADHD? As healthcare challenges surge globally — especially among youth — innovators are turning to an unlikely tool: video games. Now one of the world’s largest entertainment indus

“History has shown that while technological progress drives economic growth, it does not on its own ensure equitable income distribution or promote inclusive human development,” writes Rebeca Grynspan, Secretary-General of UNCTAD, in the preamble.

Easy-peasy, use generative AI as your negotiation tutor and sparring partner. Let’s talk about it. This analysis of an innovative AI breakthrough is part of my ongoing Forbes column coverage on the latest in AI, including identifying and explaining

The TED2025 Conference, held in Vancouver, wrapped its 36th edition yesterday, April 11. It featured 80 speakers from more than 60 countries, including Sam Altman, Eric Schmidt, and Palmer Luckey. TED’s theme, “humanity reimagined,” was tailor made

Joseph Stiglitz is renowned economist and recipient of the Nobel Prize in Economics in 2001. Stiglitz posits that AI can worsen existing inequalities and consolidated power in the hands of a few dominant corporations, ultimately undermining economic

Graph Databases: Revolutionizing Data Management Through Relationships As data expands and its characteristics evolve across various fields, graph databases are emerging as transformative solutions for managing interconnected data. Unlike traditional

Large Language Model (LLM) Routing: Optimizing Performance Through Intelligent Task Distribution The rapidly evolving landscape of LLMs presents a diverse range of models, each with unique strengths and weaknesses. Some excel at creative content gen


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

WebStorm Mac version
Useful JavaScript development tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft