


Semantic role annotation issues in text semantic understanding technology
The issue of semantic role annotation in text semantic understanding technology requires specific code examples
Introduction
In the field of natural language processing, text semantic understanding Technology is a core mission. Among them, semantic role annotation is an important technology, which is used to identify the semantic role of each word in the sentence in the context. This article will introduce the concepts and challenges of semantic role annotation and provide a concrete code example to solve the problem.
1. What is semantic role labeling
Semantic role labeling (Semantic Role Labeling) refers to the task of labeling semantic roles for each word in a sentence. Semantic role tags represent the role of a word in a sentence, such as "agent", "recipient", "time", etc. Through semantic role annotation, the semantic information and sentence structure of each word in the sentence can be understood.
For example, for the sentence "Xiao Ming ate an apple", semantic role annotation can mark "Xiao Ming" as the "agent", "apple" as the "recipient", and "eat" as " Action', and 'a' for 'amount'.
Semantic role annotation plays an important role in tasks such as machine understanding of natural language, natural language question answering, and machine translation.
2. Challenges of semantic role annotation
Semantic role annotation faces some challenges. First, different languages represent semantic roles differently, which increases the complexity of cross-language processing.
Secondly, the semantic role annotation in a sentence needs to consider contextual information. For example, "Xiao Ming ate an apple" and "Xiao Ming ate a banana", although the words in the two sentences are the same, their semantic role labels may be different.
In addition, semantic role annotation is also affected by ambiguity and polysemy. For example, in "He went to China", "he" can mean "the performer of the action" or "the recipient of the action", which requires accurate semantic role annotation based on the context.
3. Implementation of semantic role annotation
The following is a code example of semantic role annotation based on deep learning, using the PyTorch framework and BiLSTM-CRF model.
- Data preprocessing
First, the training data and labels need to be preprocessed. Divide sentences into words and label each word with a semantic role label.
- Feature extraction
In the feature extraction stage, word embedding can be used to represent words in vector form, and some other features such as part-of-speech tags and context can be added wait.
- Model construction
Use the BiLSTM-CRF model for semantic role annotation. BiLSTM (Bidirectional Long Short-term Memory Network) is used to capture contextual information, and CRF (Conditional Random Field) is used to model the transition probability of the label.
- Model training
Input the preprocessed data and features into the model for training, and use the gradient descent algorithm to optimize the model parameters.
- Model prediction
After the model training is completed, new sentences can be input into the model for prediction. The model generates corresponding semantic role labels for each word.
Code example:
import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import Dataset, DataLoader class SRLDataset(Dataset): def __init__(self, sentences, labels): self.sentences = sentences self.labels = labels def __len__(self): return len(self.sentences) def __getitem__(self, idx): sentence = self.sentences[idx] label = self.labels[idx] return sentence, label class BiLSTMCRF(nn.Module): def __init__(self, embedding_dim, hidden_dim, num_classes): super(BiLSTMCRF, self).__init__() self.embedding_dim = embedding_dim self.hidden_dim = hidden_dim self.num_classes = num_classes self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim // 2, bidirectional=True) self.hidden2tag = nn.Linear(hidden_dim, num_classes) self.crf = CRF(num_classes) def forward(self, sentence): embeds = self.embedding(sentence) lstm_out, _ = self.lstm(embeds) tag_space = self.hidden2tag(lstm_out) return tag_space def loss(self, sentence, targets): forward_score = self.forward(sentence) return self.crf.loss(forward_score, targets) def decode(self, sentence): forward_score = self.forward(sentence) return self.crf.decode(forward_score) # 数据准备 sentences = [['小明', '吃了', '一个', '苹果'], ['小明', '吃了', '一个', '香蕉']] labels = [['施事者', '动作', '数量', '受事者'], ['施事者', '动作', '数量', '受事者']] dataset = SRLDataset(sentences, labels) # 模型训练 model = BiLSTMCRF(embedding_dim, hidden_dim, num_classes) optimizer = optim.SGD(model.parameters(), lr=0.1) data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True) for epoch in range(epochs): for sentence, targets in data_loader: optimizer.zero_grad() sentence = torch.tensor(sentence) targets = torch.tensor(targets) loss = model.loss(sentence, targets) loss.backward() optimizer.step() # 模型预测 new_sentence = [['小明', '去了', '中国']] new_sentence = torch.tensor(new_sentence) predicted_labels = model.decode(new_sentence) print(predicted_labels)
Conclusion
Semantic role annotation is an important task in natural language processing. By annotating semantic roles for words in sentences, we can better Understand the semantic information and sentence structure of the text. This article introduces the concepts and challenges of semantic role annotation and provides a deep learning-based code example to solve the problem. This provides researchers and practitioners with an idea and method to implement and improve the semantic role annotation model.
The above is the detailed content of Semantic role annotation issues in text semantic understanding technology. For more information, please follow other related articles on the PHP Chinese website!

Harnessing the Power of Data Visualization with Microsoft Power BI Charts In today's data-driven world, effectively communicating complex information to non-technical audiences is crucial. Data visualization bridges this gap, transforming raw data i

Expert Systems: A Deep Dive into AI's Decision-Making Power Imagine having access to expert advice on anything, from medical diagnoses to financial planning. That's the power of expert systems in artificial intelligence. These systems mimic the pro

First of all, it’s apparent that this is happening quickly. Various companies are talking about the proportions of their code that are currently written by AI, and these are increasing at a rapid clip. There’s a lot of job displacement already around

The film industry, alongside all creative sectors, from digital marketing to social media, stands at a technological crossroad. As artificial intelligence begins to reshape every aspect of visual storytelling and change the landscape of entertainment

ISRO's Free AI/ML Online Course: A Gateway to Geospatial Technology Innovation The Indian Space Research Organisation (ISRO), through its Indian Institute of Remote Sensing (IIRS), is offering a fantastic opportunity for students and professionals to

Local Search Algorithms: A Comprehensive Guide Planning a large-scale event requires efficient workload distribution. When traditional approaches fail, local search algorithms offer a powerful solution. This article explores hill climbing and simul

The release includes three distinct models, GPT-4.1, GPT-4.1 mini and GPT-4.1 nano, signaling a move toward task-specific optimizations within the large language model landscape. These models are not immediately replacing user-facing interfaces like

Chip giant Nvidia said on Monday it will start manufacturing AI supercomputers— machines that can process copious amounts of data and run complex algorithms— entirely within the U.S. for the first time. The announcement comes after President Trump si


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

Dreamweaver Mac version
Visual web development tools

Notepad++7.3.1
Easy-to-use and free code editor