search
HomeTechnology peripheralsAI770 million parameters, exceeding 540 billion PaLM! UW Google proposes 'step-by-step distillation', which only requires 80% of training data | ACL 2023

Large language models excel in performance and are able to solve new tasks with zero- or few-shot hints. However, in actual application deployment, LLM is not very practical because its memory utilization efficiency is low and it requires a large amount of computing resources. For example, running a language model service with 175 billion parameters requires at least 350GB of video memory. Most of the current most advanced language models have more than 500 billion parameters. Many research teams do not have enough resources to run them, and they cannot meet the low-latency performance in real applications.

There are also some studies using manually labeled data or distillation using LLM-generated labels to train smaller, task-specific models, but fine-tuning and distillation require a large amount of training data to achieve comparable performance to LLM.

In order to solve the problem of resource requirements for large models, the University of Washington and Google collaborated to propose a new distillation mechanism called "Distilling Step-by-Step". Through step-by-step distillation, the size of the distilled model is smaller than the original model, but the performance is better, and less training data is required during the fine-tuning and distillation process

7.7亿参数,超越5400亿PaLM!UW谷歌提出「分步蒸馏」,只需80%训练数据|ACL 2023

Please click the following link to view the paper: https://arxiv.org/abs/2305.02301

The distribution distillation mechanism extracts the prediction reason from LLM (rationale ) as additional supervisory information for training small models within a multi-task framework.

7.7亿参数,超越5400亿PaLM!UW谷歌提出「分步蒸馏」,只需80%训练数据|ACL 2023After experiments on 4 NLP benchmarks, we found:

1. Compared with fine-tuning and distillation, this mechanism uses less Training samples achieve better performance;

Compared with few-sample prompt LLM, this mechanism uses smaller size models to achieve better performance

3. At the same time, it reduces the model size and The data volume can also achieve better performance than LLM.

In the experiment, the 770M T5 model after fine-tuning was better than the 540B PaLM model with few sample hints in the benchmark test using only 80% of the available data, while the T5 model with the same standard fine-tuning even used 100% Data sets are also difficult to match.

Distillation method

The key idea of ​​distribution distillation is to gradually extract information-rich prediction reasons described in natural language, that is, intermediate reasoning steps, to explain the connection between the input problem and the model output , and use these data to train small models more efficiently

7.7亿参数,超越5400亿PaLM!UW谷歌提出「分步蒸馏」,只需80%训练数据|ACL 2023 Distribution distillation mainly includes two stages:

1. From Extraction principle (rationale) in LLMResearchers use the few-sample Chain of Thinking (CoT) prompt to extract the prediction intermediate steps from LLM.

After determining the target task, first prepare several samples in the LLM input prompt. Each example consists of a triplet, including input, principle and output

7.7亿参数,超越5400亿PaLM!UW谷歌提出「分步蒸馏」,只需80%训练数据|ACL 2023 After inputting prompts, LLM can imitate the triplet demonstration to generate other new problems. Prediction principle, for example, in the common sense question and answer task, given

input question:

Sammy wants to go to a place where crowds gather. Where will he choose? The options are: (a) densely populated area, (b) race track, (c) desert, (d) apartment, (e) roadblock

(Sammy wanted to go to where the people are. Where might he go? Answer Choices: (a) populated areas, (b) race track, (c) desert, (d) apartment, (e) roadblock)

After gradual refinement, LLM You can give the correct answer to the question "(a) Densely populated area" and provide a reason for answering the question "The answer must be a place with many people. Among the above choices, only densely populated areas have many people." After gradual refinement, LLM was able to conclude that the correct answer is "(a) densely populated area" and provided the reason for answering the question "The answer must be a place with many people. Among the above choices, only densely populated areas have many people." people."

By providing CoT examples paired with rationales in prompts, the contextual learning capability allows LLM to generate appropriate answer reasons for unencountered question types

2. Training Mini Model

By constructing the training process as a multi-task problem, the reasons for prediction can be extracted and incorporated into the training small model

In addition to the standard label prediction task In addition, the researchers also used a new reason generation task to train a small model, so that the model can learn to generate intermediate reasoning steps for prediction, and guide the model to better predict the result label.

Distinguish label prediction and reason generation tasks by adding the task prefixes "label" and "rationale" to the input prompt.

Experimental results

In the experiment, the researchers selected the PaLM model with 540 billion parameters as the LLM baseline, and used the T5 model as the task-related downstream small model.

In this study, we conducted experiments on four benchmark datasets, namely e-SNLI and ANLI for natural language reasoning, CQA for common sense question answering, and SVAMP for Application problems in arithmetic and mathematics. We conducted experiments on these three different NLP tasks

Less training data

The stepwise distillation method performs better than Standard fine-tuning is better and requires less training data

On the e-SNLI dataset, better performance than standard fine-tuning is achieved when using 12.5% ​​of the full dataset, on ANLI, Only 75%, 25% and 20% of the training data are required on CQA and SVAMP respectively.

7.7亿参数,超越5400亿PaLM!UW谷歌提出「分步蒸馏」,只需80%训练数据|ACL 2023

Compared to standard fine-tuning using a 220M T5 model on manually labeled datasets of varying sizes, distribution distillation is superior when using fewer training examples across all datasets. Distribution compared to LLM prompted by few-shot CoT Distillation results in a model that is much smaller in size but performs better.

On the e-SNLI data set, using the 220M T5 model achieves better performance than the 540B PaLM; on ANLI, using the 770M T5 model achieves better performance than the 540B PaLM. Model size is only 1/700Smaller model, less data

While reducing model size and training data , we successfully achieved performance exceeding few-shot PaLM

In ANLI, outperforming 540B PaLM using a 770M T5 model, while using only 80% of the full dataset

It has been observed that standard fine-tuning cannot reach the performance level of PaLM even with the complete 100% data set, indicating that stepwise distillation can simultaneously reduce the model size and the amount of training data, thereby achieving Performance beyond LLM

The above is the detailed content of 770 million parameters, exceeding 540 billion PaLM! UW Google proposes 'step-by-step distillation', which only requires 80% of training data | ACL 2023. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
Can't use ChatGPT! Explaining the causes and solutions that can be tested immediately [Latest 2025]Can't use ChatGPT! Explaining the causes and solutions that can be tested immediately [Latest 2025]May 14, 2025 am 05:04 AM

ChatGPT is not accessible? This article provides a variety of practical solutions! Many users may encounter problems such as inaccessibility or slow response when using ChatGPT on a daily basis. This article will guide you to solve these problems step by step based on different situations. Causes of ChatGPT's inaccessibility and preliminary troubleshooting First, we need to determine whether the problem lies in the OpenAI server side, or the user's own network or device problems. Please follow the steps below to troubleshoot: Step 1: Check the official status of OpenAI Visit the OpenAI Status page (status.openai.com) to see if the ChatGPT service is running normally. If a red or yellow alarm is displayed, it means Open

Calculating The Risk Of ASI Starts With Human MindsCalculating The Risk Of ASI Starts With Human MindsMay 14, 2025 am 05:02 AM

On 10 May 2025, MIT physicist Max Tegmark told The Guardian that AI labs should emulate Oppenheimer’s Trinity-test calculus before releasing Artificial Super-Intelligence. “My assessment is that the 'Compton constant', the probability that a race to

An easy-to-understand explanation of how to write and compose lyrics and recommended tools in ChatGPTAn easy-to-understand explanation of how to write and compose lyrics and recommended tools in ChatGPTMay 14, 2025 am 05:01 AM

AI music creation technology is changing with each passing day. This article will use AI models such as ChatGPT as an example to explain in detail how to use AI to assist music creation, and explain it with actual cases. We will introduce how to create music through SunoAI, AI jukebox on Hugging Face, and Python's Music21 library. Through these technologies, everyone can easily create original music. However, it should be noted that the copyright issue of AI-generated content cannot be ignored, and you must be cautious when using it. Let’s explore the infinite possibilities of AI in the music field together! OpenAI's latest AI agent "OpenAI Deep Research" introduces: [ChatGPT]Ope

What is ChatGPT-4? A thorough explanation of what you can do, the pricing, and the differences from GPT-3.5!What is ChatGPT-4? A thorough explanation of what you can do, the pricing, and the differences from GPT-3.5!May 14, 2025 am 05:00 AM

The emergence of ChatGPT-4 has greatly expanded the possibility of AI applications. Compared with GPT-3.5, ChatGPT-4 has significantly improved. It has powerful context comprehension capabilities and can also recognize and generate images. It is a universal AI assistant. It has shown great potential in many fields such as improving business efficiency and assisting creation. However, at the same time, we must also pay attention to the precautions in its use. This article will explain the characteristics of ChatGPT-4 in detail and introduce effective usage methods for different scenarios. The article contains skills to make full use of the latest AI technologies, please refer to it. OpenAI's latest AI agent, please click the link below for details of "OpenAI Deep Research"

Explaining how to use the ChatGPT app! Japanese support and voice conversation functionExplaining how to use the ChatGPT app! Japanese support and voice conversation functionMay 14, 2025 am 04:59 AM

ChatGPT App: Unleash your creativity with the AI ​​assistant! Beginner's Guide The ChatGPT app is an innovative AI assistant that handles a wide range of tasks, including writing, translation, and question answering. It is a tool with endless possibilities that is useful for creative activities and information gathering. In this article, we will explain in an easy-to-understand way for beginners, from how to install the ChatGPT smartphone app, to the features unique to apps such as voice input functions and plugins, as well as the points to keep in mind when using the app. We'll also be taking a closer look at plugin restrictions and device-to-device configuration synchronization

How do I use the Chinese version of ChatGPT? Explanation of registration procedures and feesHow do I use the Chinese version of ChatGPT? Explanation of registration procedures and feesMay 14, 2025 am 04:56 AM

ChatGPT Chinese version: Unlock new experience of Chinese AI dialogue ChatGPT is popular all over the world, did you know it also offers a Chinese version? This powerful AI tool not only supports daily conversations, but also handles professional content and is compatible with Simplified and Traditional Chinese. Whether it is a user in China or a friend who is learning Chinese, you can benefit from it. This article will introduce in detail how to use ChatGPT Chinese version, including account settings, Chinese prompt word input, filter use, and selection of different packages, and analyze potential risks and response strategies. In addition, we will also compare ChatGPT Chinese version with other Chinese AI tools to help you better understand its advantages and application scenarios. OpenAI's latest AI intelligence

5 AI Agent Myths You Need To Stop Believing Now5 AI Agent Myths You Need To Stop Believing NowMay 14, 2025 am 04:54 AM

These can be thought of as the next leap forward in the field of generative AI, which gave us ChatGPT and other large-language-model chatbots. Rather than simply answering questions or generating information, they can take action on our behalf, inter

An easy-to-understand explanation of the illegality of creating and managing multiple accounts using ChatGPTAn easy-to-understand explanation of the illegality of creating and managing multiple accounts using ChatGPTMay 14, 2025 am 04:50 AM

Efficient multiple account management techniques using ChatGPT | A thorough explanation of how to use business and private life! ChatGPT is used in a variety of situations, but some people may be worried about managing multiple accounts. This article will explain in detail how to create multiple accounts for ChatGPT, what to do when using it, and how to operate it safely and efficiently. We also cover important points such as the difference in business and private use, and complying with OpenAI's terms of use, and provide a guide to help you safely utilize multiple accounts. OpenAI

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool