Home > Article > Backend Development > Synchronization and performance optimization in Golang concurrency model
Synchronization and performance optimization in Golang concurrency model
Introduction:
With the continuous development of computer technology and the popularity of multi-core processors, how to effectively utilize multi-cores Resources and improving program performance have become an important topic in software development. As a concurrent programming language, Golang provides a wealth of concurrency primitives and libraries, allowing programmers to take full advantage of multi-core processors and reduce the complexity of concurrent programming. This article will introduce the synchronization mechanism and performance optimization methods in the Golang concurrency model, and provide specific code examples.
1. Synchronization mechanism
import "sync" var mu sync.Mutex var balance int func Deposit(amount int) { mu.Lock() defer mu.Unlock() balance += amount } func main() { wg := sync.WaitGroup{} for i := 0; i < 1000; i++ { wg.Add(1) go func() { Deposit(100) wg.Done() }() } wg.Wait() fmt.Println(balance) }
import "sync" var ( mu sync.Mutex deposit = 0 cond = sync.NewCond(&mu) ) func Deposit(amount int) { mu.Lock() defer mu.Unlock() deposit += amount cond.Signal() // 通知等待的线程 } func Withdraw(amount int) { mu.Lock() defer mu.Unlock() for deposit < amount { // 判断条件是否满足 cond.Wait() // 等待条件变量的信号 } deposit -= amount } func main() { go Deposit(100) go Withdraw(100) }
import "sync" var ( sem = make(chan struct{}, 10) // 限制同时访问资源的线程数量为10 balance int ) func Deposit(amount int) { sem <- struct{}{} // 获取信号量 balance += amount <-sem // 释放信号量 } func main() { wg := sync.WaitGroup{} for i := 0; i < 1000; i++ { wg.Add(1) go func() { Deposit(100) wg.Done() }() } wg.Wait() fmt.Println(balance) }
2. Performance optimization method
func ParallelProcess(data []int) { c := make(chan int) for i := 0; i < len(data); i++ { go func(d int) { result := Process(d) c <- result }(data[i]) } for i := 0; i < len(data); i++ { <-c } }
func BatchProcess(data []int) { wg := sync.WaitGroup{} for i := 0; i < len(data); i++ { wg.Add(1) go func(d int) { Process(d) wg.Done() }(data[i]) } wg.Wait() }
import "sync/atomic" var balance int32 func Deposit(amount int) { atomic.AddInt32(&balance, int32(amount)) } func main() { wg := sync.WaitGroup{} for i := 0; i < 1000; i++ { wg.Add(1) go func() { Deposit(100) wg.Done() }() } wg.Wait() fmt.Println(balance) }
Conclusion:
Golang provides a rich set of concurrency primitives and libraries, allowing programmers to take full advantage of multi-core processors and reduce the complexity of concurrent programming. By rationally selecting and using synchronization mechanisms and performance optimization methods, we can improve the concurrency performance and responsiveness of the program. However, it is necessary to weigh the relationship between synchronization and performance based on specific application scenarios and requirements, and choose the most suitable methods and tools to solve the problem.
Reference materials:
The above is the detailed content of Synchronization and performance optimization in Golang concurrency model. For more information, please follow other related articles on the PHP Chinese website!