


Python for NLP: How to handle PDF text containing embedded images?
Abstract:
This article will introduce how to use Python to process PDF text containing embedded images. We will use the PyPDF2 library to parse PDF documents and then use the Python Imaging Library (PIL) to process embedded images.
Introduction:
In natural language processing (NLP), processing PDF text containing embedded images is a common task. Such text is usually obtained from scanned documents or e-books, and the text and image need to be separated for subsequent processing. Python is a powerful programming language with many libraries for NLP. In this article, we will demonstrate how to process this type of PDF text using Python.
Steps:
-
Install the necessary libraries:
Before you start, you need to install the PyPDF2 and PIL libraries. These libraries can be installed using the following command:pip install PyPDF2 pip install pillow
-
Import the required libraries:
Before writing the code, first import the required libraries:import PyPDF2 from PIL import Image
-
Parse PDF documents:
Use the PdfFileReader method in the PyPDF2 library to parse PDF documents:def extract_text_from_pdf(pdf_path): text = '' with open(pdf_path, 'rb') as file: pdf = PyPDF2.PdfFileReader(file) for page in range(pdf.getNumPages()): text += pdf.getPage(page).extractText() return text
-
Get embedded images:
Use the PyPDF2 library The getPage method can get the individual pages of the PDF document. Then, use the extract_images method of the object returned by the getPage method to extract the embedded images. The extracted image will be returned as a dictionary, where the key is the object number of the image and the value is a tuple containing the binary data of the image and the image information of the image.def extract_images_from_pdf(pdf_path): images = {} with open(pdf_path, 'rb') as file: pdf = PyPDF2.PdfFileReader(file) for page in range(pdf.getNumPages()): page_images = pdf.getPage(page).extract_images() for obj_num, image in page_images.items(): images[obj_num] = image[0] return images
-
Saving embedded images:
After obtaining the embedded image, you can use the Image.frombytes method in the PIL library to create a PIL image object. The image can then be saved to a local file using the save method.def save_images(images, output_dir): for obj_num, image_data in images.items(): image = Image.frombytes(**image_data) image_path = f"{output_dir}/{obj_num}.jpg" image.save(image_path)
-
Full sample code:
Here is a complete sample code that demonstrates how to handle PDF text containing embedded images:import PyPDF2 from PIL import Image def extract_text_from_pdf(pdf_path): text = '' with open(pdf_path, 'rb') as file: pdf = PyPDF2.PdfFileReader(file) for page in range(pdf.getNumPages()): text += pdf.getPage(page).extractText() return text def extract_images_from_pdf(pdf_path): images = {} with open(pdf_path, 'rb') as file: pdf = PyPDF2.PdfFileReader(file) for page in range(pdf.getNumPages()): page_images = pdf.getPage(page).extract_images() for obj_num, image in page_images.items(): images[obj_num] = image[0] return images def save_images(images, output_dir): for obj_num, image_data in images.items(): image = Image.frombytes(**image_data) image_path = f"{output_dir}/{obj_num}.jpg" image.save(image_path) if __name__ == '__main__': pdf_path = 'example.pdf' output_dir = 'output' text = extract_text_from_pdf(pdf_path) print('Extracted Text:', text) images = extract_images_from_pdf(pdf_path) save_images(images, output_dir) print('Images Saved.')
Conclusion:
Using Python to process PDF text containing embedded images can become an important part of your NLP workflow. This article explains how to use PyPDF2 and the PIL library to parse PDF documents and process embedded images. By using these libraries, text and images can be easily separated and further processed and analyzed.
References:
- PyPDF2: https://pythonhosted.org/PyPDF2/
- PIL: https://pillow.readthedocs.io/introduction. html
The above is the detailed content of Python for NLP: How to handle PDF text containing embedded images?. For more information, please follow other related articles on the PHP Chinese website!

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

Dreamweaver Mac version
Visual web development tools

Notepad++7.3.1
Easy-to-use and free code editor

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft
