search
HomeBackend DevelopmentGolangConcurrent task scheduling: Use Go WaitGroup to build a task scheduling engine

并发任务调度:使用Go WaitGroup构建任务调度引擎

Concurrent task scheduling: Use Go WaitGroup to build a task scheduling engine

Introduction:
In today's fast-paced digital world, task scheduling is crucial to completing tasks efficiently. It's important. Concurrent task scheduling is a method that can handle multiple tasks at the same time, allowing the system to make full use of system resources and improve processing efficiency. In this article, I will introduce how to use WaitGroup of Go language to build a simple but practical task scheduling engine, and provide specific code examples.

1. Overview of task scheduling engine
Task scheduling engine is a system that allocates multiple tasks to multiple threads or coroutines for parallel execution. It can determine the scheduling order of threads/coroutines based on the nature and priority of the task, and determine whether the number of threads/coroutines needs to be dynamically increased or decreased.

Go language is a concurrent programming language that provides rich concurrency primitives. Among them, WaitGroup is a very useful tool for waiting for the completion of a group of tasks. We can use WaitGroup to build a simple but efficient task scheduling engine.

2. Implementation steps of task scheduling engine
The following are the implementation steps of using Go WaitGroup to build a task scheduling engine:

  1. Import the necessary packages
    Before starting, We first need to import the sync package to use WaitGroup.
import (
    "sync"
)
  1. Create task queue
    We need to create a queue for storing tasks. This queue can be an array, slice or linked list, choose according to the actual situation.
var taskQueue []func() error
  1. Initialize WaitGroup
    We need to create a WaitGroup object to wait for all tasks to be completed.
var wg sync.WaitGroup
  1. Add a task to the task queue
    Add a task to the task queue, for example:
taskQueue = append(taskQueue, func() error {
    fmt.Println("Task 1")
    time.Sleep(1 * time.Second)
    return nil
})
  1. Start the task scheduling engine
    We use the Add method of WaitGroup to set the number of waiting tasks, then execute the tasks concurrently, and call the Done method after the tasks are completed.
for _, task := range taskQueue {
    wg.Add(1)
    go func(task func() error) {
        defer wg.Done()
        task()
    }(task)
}

wg.Wait()
  1. Complete code example
    The following is a complete code example using Go WaitGroup to build a task scheduling engine:
package main

import (
    "fmt"
    "sync"
    "time"
)

var taskQueue []func() error
var wg sync.WaitGroup

func main() {
    taskQueue = append(taskQueue, func() error {
        fmt.Println("Task 1")
        time.Sleep(1 * time.Second)
        return nil
    })

    taskQueue = append(taskQueue, func() error {
        fmt.Println("Task 2")
        time.Sleep(2 * time.Second)
        return nil
    })

    taskQueue = append(taskQueue, func() error {
        fmt.Println("Task 3")
        time.Sleep(3 * time.Second)
        return nil
    })

    for _, task := range taskQueue {
        wg.Add(1)
        go func(task func() error) {
            defer wg.Done()
            task()
        }(task)
    }
    wg.Wait()
}

Code description:
In this example, we first define a taskQueue to store tasks. Then, we use WaitGroup to wait for all tasks to complete. After the task is completed, we use the waitGroup's Done method to notify the task scheduling engine. When all tasks are completed, the main function will exit.

Conclusion:
By using WaitGroup of Go language, we can easily build an efficient concurrent task scheduling engine. Through reasonable task scheduling methods, we can make full use of system resources, complete a large number of tasks in a short time, and improve the efficiency of the system.

However, this is just a simple example, and the actual task scheduling engine may need to handle more complex tasks and scheduling logic. In practical applications, we may also need to consider factors such as task priority and task dependencies. Therefore, based on actual needs, we need to further expand and optimize the task scheduling engine.

Reference link:

  • [Go WaitGroup official document](https://golang.org/pkg/sync/#WaitGroup)
  • [Go concurrent programming The Art of MOOC](https://www.imooc.com/learn/1172)

The above is a brief introduction and code example of using Go WaitGroup to build a task scheduling engine. I hope this article can help you understand concurrent task scheduling, and how to use WaitGroup of the Go language to implement a task scheduling engine.

The above is the detailed content of Concurrent task scheduling: Use Go WaitGroup to build a task scheduling engine. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Golang vs. Python: Concurrency and MultithreadingGolang vs. Python: Concurrency and MultithreadingApr 17, 2025 am 12:20 AM

Golang is more suitable for high concurrency tasks, while Python has more advantages in flexibility. 1.Golang efficiently handles concurrency through goroutine and channel. 2. Python relies on threading and asyncio, which is affected by GIL, but provides multiple concurrency methods. The choice should be based on specific needs.

Golang and C  : The Trade-offs in PerformanceGolang and C : The Trade-offs in PerformanceApr 17, 2025 am 12:18 AM

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.

Golang vs. Python: Applications and Use CasesGolang vs. Python: Applications and Use CasesApr 17, 2025 am 12:17 AM

ChooseGolangforhighperformanceandconcurrency,idealforbackendservicesandnetworkprogramming;selectPythonforrapiddevelopment,datascience,andmachinelearningduetoitsversatilityandextensivelibraries.

Golang vs. Python: Key Differences and SimilaritiesGolang vs. Python: Key Differences and SimilaritiesApr 17, 2025 am 12:15 AM

Golang and Python each have their own advantages: Golang is suitable for high performance and concurrent programming, while Python is suitable for data science and web development. Golang is known for its concurrency model and efficient performance, while Python is known for its concise syntax and rich library ecosystem.

Golang vs. Python: Ease of Use and Learning CurveGolang vs. Python: Ease of Use and Learning CurveApr 17, 2025 am 12:12 AM

In what aspects are Golang and Python easier to use and have a smoother learning curve? Golang is more suitable for high concurrency and high performance needs, and the learning curve is relatively gentle for developers with C language background. Python is more suitable for data science and rapid prototyping, and the learning curve is very smooth for beginners.

The Performance Race: Golang vs. CThe Performance Race: Golang vs. CApr 16, 2025 am 12:07 AM

Golang and C each have their own advantages in performance competitions: 1) Golang is suitable for high concurrency and rapid development, and 2) C provides higher performance and fine-grained control. The selection should be based on project requirements and team technology stack.

Golang vs. C  : Code Examples and Performance AnalysisGolang vs. C : Code Examples and Performance AnalysisApr 15, 2025 am 12:03 AM

Golang is suitable for rapid development and concurrent programming, while C is more suitable for projects that require extreme performance and underlying control. 1) Golang's concurrency model simplifies concurrency programming through goroutine and channel. 2) C's template programming provides generic code and performance optimization. 3) Golang's garbage collection is convenient but may affect performance. C's memory management is complex but the control is fine.

Golang's Impact: Speed, Efficiency, and SimplicityGolang's Impact: Speed, Efficiency, and SimplicityApr 14, 2025 am 12:11 AM

Goimpactsdevelopmentpositivelythroughspeed,efficiency,andsimplicity.1)Speed:Gocompilesquicklyandrunsefficiently,idealforlargeprojects.2)Efficiency:Itscomprehensivestandardlibraryreducesexternaldependencies,enhancingdevelopmentefficiency.3)Simplicity:

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Chat Commands and How to Use Them
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools