search
HomeBackend DevelopmentGolangEfficient combination of Golang WaitGroup and coroutine pool

Efficient combination of Golang WaitGroup and coroutine pool

Sep 28, 2023 pm 05:22 PM
golangcoroutine poolwaitgroup

Golang WaitGroup和协程池的高效结合

The efficient combination of Golang WaitGroup and coroutine pool requires specific code examples

Introduction:
Go language is a language that emphasizes concurrent programming. Efficient concurrent execution is achieved through goroutine. In some scenarios where multiple tasks need to be executed simultaneously, the combination of WaitGroup and coroutine pool can effectively improve program execution efficiency and resource utilization. This article will introduce how to use WaitGroup and coroutine pool in Golang to achieve efficient concurrent programming, and provide specific code examples.

1. Introduction to WaitGroup
WaitGroup is a tool in Go language used to wait for the completion of the execution of a group of coroutines. Its source code is defined as follows:

type WaitGroup struct {
    noCopy noCopy

    // 64位的值:高32位存储计数器,低32位存储等待计数器
    // 这个变量可以被原子操作加载和存储。
    // 在64位同步原语中,它必须在64位边界对齐。
    // 是一个强制的要求。
    state1 [3]uint32
}

WaitGroup is usually created in the main goroutine, and then each sub-goroutine in the main goroutine calls the Add method to increase the counter, and after the execution is completed, the Done method is used to decrement the counter. The main goroutine can wait for the counter to return to zero through the Wait method. The specific sample code is as follows:

package main

import (
    "fmt"
    "sync"
)

func main() {
    var wg sync.WaitGroup
    wg.Add(3)

    go func() {
        defer wg.Done()
        fmt.Println("Task 1 executing")
    }()

    go func() {
        defer wg.Done()
        fmt.Println("Task 2 executing")
    }()

    go func() {
        defer wg.Done()
        fmt.Println("Task 3 executing")
    }()

    wg.Wait()
    fmt.Println("All tasks completed")
}

In the above example, we create a WaitGroup object and then increase the counter by calling the Add method. Next, we created three sub-goroutines, and after each goroutine is executed, the counter is decremented through the Done method. Finally, the main goroutine waits for the counter to return to zero by calling the Wait method. When all tasks are completed, the program will output "All tasks completed".

2. Introduction to the coroutine pool
In concurrent programming, the coroutine pool (goroutine pool) is a commonly used mode. By creating a fixed number of goroutines and evenly distributing tasks to them, you can avoid the overhead of constantly creating and destroying goroutines. In Go language, you can use channels to implement coroutine pools. The specific sample code is as follows:

package main

import (
    "fmt"
    "sync"
)

func worker(id int, jobs <-chan int, results chan<- int) {
    for j := range jobs {
        fmt.Println("Worker", id, "started job", j)
        fib := fibonacci(j)
        fmt.Println("Worker", id, "finished job", j)
        results <- fib
    }
}

func fibonacci(n int) int {
    if n <= 1 {
        return n
    }

    return fibonacci(n-1) + fibonacci(n-2)
}

const numJobs = 5
const numWorkers = 3

func main() {
    jobs := make(chan int, numJobs)
    results := make(chan int, numJobs)

    var wg sync.WaitGroup
    wg.Add(numWorkers)

    for w := 1; w <= numWorkers; w++ {
        go func(id int) {
            defer wg.Done()
            worker(id, jobs, results)
        }(w)
    }

    for j := 1; j <= numJobs; j++ {
        jobs <- j
    }
    close(jobs)

    wg.Wait()

    for r := 1; r <= numJobs; r++ {
        fmt.Println(<-results)
    }
}

In the above example, we defined the worker function, which reads the pending tasks from the jobs channel, then executes the tasks and sends the results to the results channel. We created a jobs channel and a results channel to implement the function of the coroutine pool by distributing tasks and obtaining results.

In the main function, we use WaitGroup to wait for all workers (goroutines) to complete task execution. Then, we send the tasks to be executed to the jobs channel and close the channel after execution. Finally, we get the calculation results from the results channel and output them.

3. An efficient combination case of WaitGroup and coroutine pool
Next, we will combine the above two concepts to introduce how to effectively use WaitGroup and coroutine pool to implement concurrent programming. The specific sample code is as follows:

package main

import (
    "fmt"
    "sync"
)

func worker(id int, jobs <-chan int, results chan<- int) {
    for j := range jobs {
        fmt.Println("Worker", id, "started job", j)
        fib := fibonacci(j)
        fmt.Println("Worker", id, "finished job", j)
        results <- fib
    }
}

func fibonacci(n int) int {
    if n <= 1 {
        return n
    }

    return fibonacci(n-1) + fibonacci(n-2)
}

const numJobs = 5
const numWorkers = 3

func main() {
    var wg sync.WaitGroup
    wg.Add(numWorkers)

    jobs := make(chan int, numJobs)
    results := make(chan int, numJobs)

    for w := 1; w <= numWorkers; w++ {
        go func(id int) {
            defer wg.Done()
            worker(id, jobs, results)
        }(w)
    }

    for j := 1; j <= numJobs; j++ {
        jobs <- j
    }
    close(jobs)

    go func() {
        wg.Wait()
        close(results)
    }()

    for r := range results {
        fmt.Println(r)
    }
}

In the above example, we created a WaitGroup object and incremented the counter by calling the Add method. Then, we created a jobs channel and a results channel to distribute tasks and obtain results. We create a fixed number of workers (goroutines) and use the Wait method to wait for them to complete their tasks.

In the main function, we send the tasks to be executed to the jobs channel and close the channel after completion. We then start a coroutine to wait for all workers to complete their tasks and close the results channel when completed. Finally, we output the calculation results by getting them from the results channel.

Conclusion:
By combining WaitGroup and coroutine pool, we can efficiently implement concurrent programming. By using a WaitGroup to wait for the execution of a group of goroutines to complete, you can ensure that the main goroutine continues to execute after all tasks are completed. By using the coroutine pool, we can avoid the overhead of frequently creating and destroying goroutines and improve the execution efficiency and resource utilization of the program.

The Fibonacci sequence calculation in the code example is just a demonstration example, and can be replaced with other tasks according to specific needs in actual applications. Using WaitGroup and coroutine pool, we can better control the number of concurrently executed tasks and effectively utilize computing resources.

Although the Go language provides a wealth of concurrent programming tools and features, you still need to be cautious when using them. Proper use of WaitGroup and coroutine pool can help us better manage and schedule goroutines and achieve efficient concurrent programming.

The above is the detailed content of Efficient combination of Golang WaitGroup and coroutine pool. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Choosing Between Golang and Python: The Right Fit for Your ProjectChoosing Between Golang and Python: The Right Fit for Your ProjectApr 19, 2025 am 12:21 AM

Golangisidealforperformance-criticalapplicationsandconcurrentprogramming,whilePythonexcelsindatascience,rapidprototyping,andversatility.1)Forhigh-performanceneeds,chooseGolangduetoitsefficiencyandconcurrencyfeatures.2)Fordata-drivenprojects,Pythonisp

Golang: Concurrency and Performance in ActionGolang: Concurrency and Performance in ActionApr 19, 2025 am 12:20 AM

Golang achieves efficient concurrency through goroutine and channel: 1.goroutine is a lightweight thread, started with the go keyword; 2.channel is used for secure communication between goroutines to avoid race conditions; 3. The usage example shows basic and advanced usage; 4. Common errors include deadlocks and data competition, which can be detected by gorun-race; 5. Performance optimization suggests reducing the use of channel, reasonably setting the number of goroutines, and using sync.Pool to manage memory.

Golang vs. Python: Which Language Should You Learn?Golang vs. Python: Which Language Should You Learn?Apr 19, 2025 am 12:20 AM

Golang is more suitable for system programming and high concurrency applications, while Python is more suitable for data science and rapid development. 1) Golang is developed by Google, statically typing, emphasizing simplicity and efficiency, and is suitable for high concurrency scenarios. 2) Python is created by Guidovan Rossum, dynamically typed, concise syntax, wide application, suitable for beginners and data processing.

Golang vs. Python: Performance and ScalabilityGolang vs. Python: Performance and ScalabilityApr 19, 2025 am 12:18 AM

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Golang vs. Other Languages: A ComparisonGolang vs. Other Languages: A ComparisonApr 19, 2025 am 12:11 AM

Go language has unique advantages in concurrent programming, performance, learning curve, etc.: 1. Concurrent programming is realized through goroutine and channel, which is lightweight and efficient. 2. The compilation speed is fast and the operation performance is close to that of C language. 3. The grammar is concise, the learning curve is smooth, and the ecosystem is rich.

Golang and Python: Understanding the DifferencesGolang and Python: Understanding the DifferencesApr 18, 2025 am 12:21 AM

The main differences between Golang and Python are concurrency models, type systems, performance and execution speed. 1. Golang uses the CSP model, which is suitable for high concurrent tasks; Python relies on multi-threading and GIL, which is suitable for I/O-intensive tasks. 2. Golang is a static type, and Python is a dynamic type. 3. Golang compiled language execution speed is fast, and Python interpreted language development is fast.

Golang vs. C  : Assessing the Speed DifferenceGolang vs. C : Assessing the Speed DifferenceApr 18, 2025 am 12:20 AM

Golang is usually slower than C, but Golang has more advantages in concurrent programming and development efficiency: 1) Golang's garbage collection and concurrency model makes it perform well in high concurrency scenarios; 2) C obtains higher performance through manual memory management and hardware optimization, but has higher development complexity.

Golang: A Key Language for Cloud Computing and DevOpsGolang: A Key Language for Cloud Computing and DevOpsApr 18, 2025 am 12:18 AM

Golang is widely used in cloud computing and DevOps, and its advantages lie in simplicity, efficiency and concurrent programming capabilities. 1) In cloud computing, Golang efficiently handles concurrent requests through goroutine and channel mechanisms. 2) In DevOps, Golang's fast compilation and cross-platform features make it the first choice for automation tools.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function