High-concurrency RPC: Use Go WaitGroup to implement distributed calls
Highly concurrent RPC: using Go WaitGroup to implement distributed calls
With the development of the Internet, the application of distributed systems is becoming more and more widespread. In distributed systems, RPC (Remote Procedure Call) is a common communication method that allows remote calls between different processes or services. In large-scale distributed systems, highly concurrent RPC calls are a very common requirement.
Go language, as an efficient and excellent programming language with excellent concurrency performance, provides us with many convenient ways to implement high-concurrency RPC calls. This article will introduce how to use Go's WaitGroup to implement distributed calls and provide specific code examples.
First, we need to understand WaitGroup. WaitGroup is a semaphore in the Go language, used to wait for a group of goroutines to complete execution. Its principle is implemented through counters, and provides Add, Done, Wait and other methods to operate counters.
In a distributed system, we may need to call the RPC interfaces of multiple servers at the same time. At this time, we can use WaitGroup to wait for all RPC calls to complete before proceeding to the next step. The following is a specific code example:
package main import ( "fmt" "net/rpc" "sync" ) type Args struct { Name string } type Reply struct { Message string } var wg sync.WaitGroup func main() { rpcAddresses := []string{"127.0.0.1:8080", "127.0.0.1:8081", "127.0.0.1:8082"} for _, address := range rpcAddresses { wg.Add(1) go callRPC(address) } wg.Wait() fmt.Println("All RPC calls completed.") } func callRPC(address string) { defer wg.Done() client, err := rpc.Dial("tcp", address) if err != nil { fmt.Println("Failed to connect to RPC server:", err) return } args := Args{Name: "Alice"} var reply Reply err = client.Call("Service.Method", args, &reply) if err != nil { fmt.Println("RPC call failed:", err) return } fmt.Println("Received reply:", reply.Message) }
The above code demonstrates how to use WaitGroup to implement distributed calls. In the main function, we start a goroutine for each RPC address by traversing rpcAddresses, and use the Add method of WaitGroup to increment the counter value. Then each goroutine calls the callRPC function.
In the callRPC function, we establish a connection with the RPC server through the Dial function, and then call the Call method to initiate an RPC call. After receiving a reply, we print out the reply message. Finally, at the end of the function, the counter is decremented by calling the Done method.
Finally, we block the main function by calling the Wait method until all RPC calls are completed. This ensures that all RPC calls are executed before proceeding to the next step.
To summarize, using Go’s WaitGroup can easily achieve high concurrency in distributed calls. By using the Add, Done, and Wait methods appropriately, we can ensure that all RPC calls are completed before proceeding to the next step. I hope the code examples in this article can help readers better understand and use WaitGroup.
The above is the detailed content of High-concurrency RPC: Use Go WaitGroup to implement distributed calls. For more information, please follow other related articles on the PHP Chinese website!

Goimpactsdevelopmentpositivelythroughspeed,efficiency,andsimplicity.1)Speed:Gocompilesquicklyandrunsefficiently,idealforlargeprojects.2)Efficiency:Itscomprehensivestandardlibraryreducesexternaldependencies,enhancingdevelopmentefficiency.3)Simplicity:

C is more suitable for scenarios where direct control of hardware resources and high performance optimization is required, while Golang is more suitable for scenarios where rapid development and high concurrency processing are required. 1.C's advantage lies in its close to hardware characteristics and high optimization capabilities, which are suitable for high-performance needs such as game development. 2.Golang's advantage lies in its concise syntax and natural concurrency support, which is suitable for high concurrency service development.

Golang excels in practical applications and is known for its simplicity, efficiency and concurrency. 1) Concurrent programming is implemented through Goroutines and Channels, 2) Flexible code is written using interfaces and polymorphisms, 3) Simplify network programming with net/http packages, 4) Build efficient concurrent crawlers, 5) Debugging and optimizing through tools and best practices.

The core features of Go include garbage collection, static linking and concurrency support. 1. The concurrency model of Go language realizes efficient concurrent programming through goroutine and channel. 2. Interfaces and polymorphisms are implemented through interface methods, so that different types can be processed in a unified manner. 3. The basic usage demonstrates the efficiency of function definition and call. 4. In advanced usage, slices provide powerful functions of dynamic resizing. 5. Common errors such as race conditions can be detected and resolved through getest-race. 6. Performance optimization Reuse objects through sync.Pool to reduce garbage collection pressure.

Go language performs well in building efficient and scalable systems. Its advantages include: 1. High performance: compiled into machine code, fast running speed; 2. Concurrent programming: simplify multitasking through goroutines and channels; 3. Simplicity: concise syntax, reducing learning and maintenance costs; 4. Cross-platform: supports cross-platform compilation, easy deployment.

Confused about the sorting of SQL query results. In the process of learning SQL, you often encounter some confusing problems. Recently, the author is reading "MICK-SQL Basics"...

The relationship between technology stack convergence and technology selection In software development, the selection and management of technology stacks are a very critical issue. Recently, some readers have proposed...

Golang ...


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment