Analysis of the management principles of Go language garbage collector
Go language garbage collector management principle analysis
Introduction:
Garbage collection is an important function in modern programming languages, which can help programmers automatically manage memory to reduce its burden. In the Go language, the garbage collector is part of its runtime system and is responsible for recycling memory that is no longer used, making the Go language an extremely easy-to-use and efficient language. This article will provide an in-depth analysis of the garbage collector management principles of the Go language and attach specific code examples.
1. Basic principles of garbage collection
The garbage collector of Go language uses the mark-and-sweep (Mark and Sweep) algorithm. This algorithm starts from the root node (that is, global variables and local variables of running functions), marks unused objects, and after completing the marking, further clears these unused objects to release memory.
The specific garbage collection process is as follows:
- All root nodes are marked as in use.
- Recursively traverse all objects starting from the root node and mark them as in use.
- All unmarked objects will be considered garbage and will be recycled.
- Clear the memory space occupied by garbage objects.
2. Garbage collector management in Go language
The garbage collector of Go language uses a mixture of algorithm one and algorithm two, that is, concurrent marking and concurrent clearing.
- Concurrent Mark (Concurrent Mark)
Concurrent Mark means that the main thread and the garbage collection thread perform marking operations at the same time, without stopping the execution of the main thread. This mode of operation makes full use of the performance of multi-core computers and greatly reduces garbage collection pause times.
The specific process of concurrent marking is as follows:
- The garbage collector starts a dedicated marking thread.
- The concurrent marking thread starts from the root node and marks all reachable objects as being in use.
- During the marking process, the concurrent marking thread may encounter the creation of new objects and recycled objects, and needs to update the corresponding status through write barriers.
- Concurrent sweep (Concurrent Sweep)
Concurrent sweep means that the main thread and the garbage collection thread perform cleaning operations at the same time, without stopping the execution of the main thread. This mode of operation also makes full use of the performance of multi-core computers and greatly reduces the pause time of garbage collection.
The specific process of concurrent cleaning is as follows:
- The garbage collector starts a dedicated cleaning thread.
- Concurrent clearing thread clears all objects marked as garbage and releases the corresponding memory space.
- During the cleaning process, the concurrent cleaning thread may encounter the creation of new objects and recycled objects, and needs to update the corresponding status through write barriers.
3. Garbage collector operation example code
package main import ( "fmt" "runtime" ) func main() { var m runtime.MemStats runtime.ReadMemStats(&m) fmt.Printf("HeapAlloc = %v MiB ", m.HeapAlloc/1024/1024) // 申请并分配10MB内存 data := make([]byte, 10*1024*1024) runtime.ReadMemStats(&m) fmt.Printf("HeapAlloc = %v MiB ", m.HeapAlloc/1024/1024) // 调用垃圾回收器 runtime.GC() runtime.ReadMemStats(&m) fmt.Printf("HeapAlloc = %v MiB ", m.HeapAlloc/1024/1024) }
The above code uses the runtime package of Go language and the MemStats structure to check memory usage. At the beginning of the program, we read the HeapAlloc field through the ReadMemStats function to obtain the current heap allocated memory size, then used the make function to allocate 10MB of memory, and called the ReadMemStats function again to obtain the allocated memory size. Next, we call the runtime.GC() function to explicitly trigger a garbage collection process, and call the ReadMemStats function again to obtain the memory size after garbage collection. Running the above code, you can find that the garbage collector successfully reclaimed the previously allocated 10MB of memory, thereby reducing memory usage.
Conclusion:
This article provides an in-depth analysis of the garbage collector management principles of the Go language, including the basic principles of garbage collection, the specific operations of concurrent marking and concurrent clearing, and the implementation of sample code. Understanding and mastering the garbage collection mechanism of the Go language is very important for writing high-performance programs, so I hope this article will be helpful to readers.
The above is the detailed content of Analysis of the management principles of Go language garbage collector. For more information, please follow other related articles on the PHP Chinese website!

Golangisidealforperformance-criticalapplicationsandconcurrentprogramming,whilePythonexcelsindatascience,rapidprototyping,andversatility.1)Forhigh-performanceneeds,chooseGolangduetoitsefficiencyandconcurrencyfeatures.2)Fordata-drivenprojects,Pythonisp

Golang achieves efficient concurrency through goroutine and channel: 1.goroutine is a lightweight thread, started with the go keyword; 2.channel is used for secure communication between goroutines to avoid race conditions; 3. The usage example shows basic and advanced usage; 4. Common errors include deadlocks and data competition, which can be detected by gorun-race; 5. Performance optimization suggests reducing the use of channel, reasonably setting the number of goroutines, and using sync.Pool to manage memory.

Golang is more suitable for system programming and high concurrency applications, while Python is more suitable for data science and rapid development. 1) Golang is developed by Google, statically typing, emphasizing simplicity and efficiency, and is suitable for high concurrency scenarios. 2) Python is created by Guidovan Rossum, dynamically typed, concise syntax, wide application, suitable for beginners and data processing.

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Go language has unique advantages in concurrent programming, performance, learning curve, etc.: 1. Concurrent programming is realized through goroutine and channel, which is lightweight and efficient. 2. The compilation speed is fast and the operation performance is close to that of C language. 3. The grammar is concise, the learning curve is smooth, and the ecosystem is rich.

The main differences between Golang and Python are concurrency models, type systems, performance and execution speed. 1. Golang uses the CSP model, which is suitable for high concurrent tasks; Python relies on multi-threading and GIL, which is suitable for I/O-intensive tasks. 2. Golang is a static type, and Python is a dynamic type. 3. Golang compiled language execution speed is fast, and Python interpreted language development is fast.

Golang is usually slower than C, but Golang has more advantages in concurrent programming and development efficiency: 1) Golang's garbage collection and concurrency model makes it perform well in high concurrency scenarios; 2) C obtains higher performance through manual memory management and hardware optimization, but has higher development complexity.

Golang is widely used in cloud computing and DevOps, and its advantages lie in simplicity, efficiency and concurrent programming capabilities. 1) In cloud computing, Golang efficiently handles concurrent requests through goroutine and channel mechanisms. 2) In DevOps, Golang's fast compilation and cross-platform features make it the first choice for automation tools.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

Dreamweaver CS6
Visual web development tools

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

SublimeText3 Chinese version
Chinese version, very easy to use