


Golang development: Implementing high-performance database connection pool
Golang development: To implement high-performance database connection pool, specific code examples are required
Introduction:
In most applications, the database plays a role Very important role. For high-concurrency applications, database connection pools can provide better performance and efficiency. This article will introduce how to use Golang to write a high-performance database connection pool and provide code examples.
1. What is a database connection pool?
The database connection pool is a collection of cached database connections, which can provide reusable database connections for application use. Before using the database connection pool, the application needed to create a new connection every time it needed to connect to the database and close the connection after use. In this method, frequent creation and closing of connections will lead to performance degradation in high concurrency situations.
The purpose of the database connection pool is to establish a set of long-term connections between the application and the database, and manage the allocation and release of these connections, thereby improving application performance.
2. Golang implementation of database connection pool example:
The following is a simple database connection pool example written in Golang, the code is as follows:
package main import ( "database/sql" "fmt" "sync" _ "github.com/go-sql-driver/mysql" ) type DBPool struct { queue chan *sql.DB wg sync.WaitGroup } func NewDBPool(dataSourceName string, poolSize int) (*DBPool, error) { queue := make(chan *sql.DB, poolSize) for i := 0; i < poolSize; i++ { db, err := sql.Open("mysql", dataSourceName) if err != nil { return nil, err } queue <- db } return &DBPool{ queue: queue, }, nil } func (p *DBPool) Get() *sql.DB { p.wg.Add(1) db := <-p.queue return db } func (p *DBPool) Put(db *sql.DB) { p.queue <- db p.wg.Done() } func main() { // 数据库连接信息 dataSourceName := "username:password@tcp(localhost:3306)/database" // 创建数据库连接池 pool, err := NewDBPool(dataSourceName, 10) if err != nil { fmt.Println("Failed to create DBPool:", err) return } // 从连接池获取连接 conn := pool.Get() defer conn.Close() // 执行数据库操作 rows, err := conn.Query("SELECT * FROM users") if err != nil { fmt.Println("Failed to query:", err) return } defer rows.Close() // 处理查询结果 for rows.Next() { var id int var name string err = rows.Scan(&id, &name) if err != nil { fmt.Println("Failed to scan:", err) return } fmt.Println(id, name) } // 归还连接到连接池 pool.Put(conn) // 等待所有连接释放 pool.wg.Wait() }
3. Code analysis:
- Main code logic:
Mainly includesDBPool
structure andNewDBPool
,Get
,Put
method. -
DBPool
The structure contains a queuequeue
and a synchronization waiting groupwg
. -
NewDBPool
The method is used to create a new database connection pool and initially add the specified number of database connections to the queue. -
Get
method is used to obtain a database connection from the connection pool. When acquiring a connection, try to increase the count of the synchronization wait group byp.wg.Add(1)
. The -
Put
method is used to return a database connection to the connection pool and reduce the count value of the synchronization waiting group throughp.wg.Done()
. - Main function logic:
The main function first creates a database connection pool instancepool
, and then obtains a database from the connection pool throughpool.Get()
Connect, and release the connection through thedefer
keyword after use.
4. Summary:
Through the above sample code, we can learn how to use Golang to write a high-performance database connection pool. In actual applications, further optimization and expansion can be carried out according to needs, such as adding heartbeat detection, connection reuse and other functions to meet the needs of different scenarios. Through reasonable use of database connection pools, application performance and efficiency can be improved. Hope this article can be helpful to you.
The above is the detailed content of Golang development: Implementing high-performance database connection pool. For more information, please follow other related articles on the PHP Chinese website!

Go's "strings" package provides rich features to make string operation efficient and simple. 1) Use strings.Contains() to check substrings. 2) strings.Split() can be used to parse data, but it should be used with caution to avoid performance problems. 3) strings.Join() is suitable for formatting strings, but for small datasets, looping = is more efficient. 4) For large strings, it is more efficient to build strings using strings.Builder.

Go uses the "strings" package for string operations. 1) Use strings.Join function to splice strings. 2) Use the strings.Contains function to find substrings. 3) Use the strings.Replace function to replace strings. These functions are efficient and easy to use and are suitable for various string processing tasks.

ThebytespackageinGoisessentialforefficientbyteslicemanipulation,offeringfunctionslikeContains,Index,andReplaceforsearchingandmodifyingbinarydata.Itenhancesperformanceandcodereadability,makingitavitaltoolforhandlingbinarydata,networkprotocols,andfileI

Go uses the "encoding/binary" package for binary encoding and decoding. 1) This package provides binary.Write and binary.Read functions for writing and reading data. 2) Pay attention to choosing the correct endian (such as BigEndian or LittleEndian). 3) Data alignment and error handling are also key to ensure the correctness and performance of the data.

The"bytes"packageinGooffersefficientfunctionsformanipulatingbyteslices.1)Usebytes.Joinforconcatenatingslices,2)bytes.Bufferforincrementalwriting,3)bytes.Indexorbytes.IndexByteforsearching,4)bytes.Readerforreadinginchunks,and5)bytes.SplitNor

Theencoding/binarypackageinGoiseffectiveforoptimizingbinaryoperationsduetoitssupportforendiannessandefficientdatahandling.Toenhanceperformance:1)Usebinary.NativeEndianfornativeendiannesstoavoidbyteswapping.2)BatchReadandWriteoperationstoreduceI/Oover

Go's bytes package is mainly used to efficiently process byte slices. 1) Using bytes.Buffer can efficiently perform string splicing to avoid unnecessary memory allocation. 2) The bytes.Equal function is used to quickly compare byte slices. 3) The bytes.Index, bytes.Split and bytes.ReplaceAll functions can be used to search and manipulate byte slices, but performance issues need to be paid attention to.

The byte package provides a variety of functions to efficiently process byte slices. 1) Use bytes.Contains to check the byte sequence. 2) Use bytes.Split to split byte slices. 3) Replace the byte sequence bytes.Replace. 4) Use bytes.Join to connect multiple byte slices. 5) Use bytes.Buffer to build data. 6) Combined bytes.Map for error processing and data verification.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

WebStorm Mac version
Useful JavaScript development tools
