How to use Java to develop a containerized application based on Docker
With the development of cloud computing and containerization technology, Docker has become a popular containerization solution plan. It provides a lightweight, portable, and scalable deployment method that enables developers to easily create, deploy, and manage applications. If you want to use Java to develop a containerized application based on Docker, this article will introduce some basic concepts and specific code examples.
- Docker and Containerization Overview
Docker is an open source containerization platform that packages applications and their dependencies into an independent container to run in different environments. Containerization enables faster deployment and better portability by isolating dependencies between applications and operating systems. Docker containers can run in any environment that supports Docker, whether it is a developer's local machine or a cloud server in a production environment. - Preparation for developing Docker containerized applications in Java
Before starting development, you need to install Docker and understand some basic commands and concepts, such as images, containers and Dockerfiles. In addition, you also need to install a Java development environment, such as JDK and Maven. - Create a simple Java application
First, we create a simple Java application. In your working directory, create a folder called "HelloDocker" and in that directory create a Java file called "HelloDocker.java". In this file, write the following code:
public class HelloDocker { public static void main(String[] args) { System.out.println("Hello Docker!"); } }
Maven is used to build and manage the project, so we also need to create a file called "pom.xml". In that file, add the following content:
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.example</groupId> <artifactId>HelloDocker</artifactId> <version>1.0-SNAPSHOT</version> <properties> <maven.compiler.source>1.8</maven.compiler.source> <maven.compiler.target>1.8</maven.compiler.target> </properties> </project>
Next, compile and run the application using the following commands:
mvn compile mvn exec:java -Dexec.mainClass="com.example.HelloDocker"
If everything goes well, you will see the output on the console Result: "Hello Docker!".
- Create a Dockerfile
Next, we will create a Dockerfile, which is used to create a Docker image. In your "HelloDocker" folder, create a file called "Dockerfile". In this file, add the following content:
FROM openjdk:8 COPY target/HelloDocker-1.0-SNAPSHOT.jar /usr/app/HelloDocker-1.0-SNAPSHOT.jar WORKDIR /usr/app ENTRYPOINT ["java", "-jar", "HelloDocker-1.0-SNAPSHOT.jar"]
This Dockerfile specifies an image based on openjdk:8 as the base image, copies the compiled Java application to the container, and sets the working directory to "/usr/app". Finally, use the ENTRYPOINT directive to define the default command when running the container.
- Building and running Docker containers
Use the following command to build the Docker image:
docker build -t hello-docker .
This command specifies the directory where the Dockerfile is located by using a dot "." And use the "-t" option to specify the name of the image.
After the build is completed, we can use the following command to run the Docker container:
docker run hello-docker
If everything goes well, you will see the output on the console: "Hello Docker!".
So far, we have successfully developed a simple application using Java and containerized it based on Docker. During the actual development process, you can further extend and optimize this application and use more features and functions of Docker to meet your needs.
Summary
This article introduces how to use Java to develop a containerized application based on Docker. We briefly introduce the concepts of Docker and containerization, and provide a concrete code example to help readers understand how to use Docker for containerization development in Java applications. With practice and further learning, you'll be better able to leverage Docker and Java to build and deploy containerized applications.
The above is the detailed content of How to use Java to develop a Docker-based containerized application. For more information, please follow other related articles on the PHP Chinese website!

docker中rm和rmi的区别:rm命令用于删除一个或者多个容器,而rmi命令用于删除一个或者多个镜像;rm命令的语法为“docker rm [OPTIONS] CONTAINER [CONTAINER...]”,rmi命令的语法为“docker rmi [OPTIONS] IMAGE [IMAGE...]”。

docker官方镜像有:1、nginx,一个高性能的HTTP和反向代理服务;2、alpine,一个面向安全应用的轻量级Linux发行版;3、busybox,一个集成了三百多个常用Linux命令和工具的软件;4、ubuntu;5、PHP等等。

docker对于小型企业、个人、教育和非商业开源项目来说是免费的;2021年8月31日,docker宣布“Docker Desktop”将转变“Docker Personal”,将只免费提供给小型企业、个人、教育和非商业开源项目使用,对于其他用例则需要付费订阅。

docker容器重启后数据会丢失的;但是可以利用volume或者“data container”来实现数据持久化,在容器关闭之后可以利用“-v”或者“–volumes-from”重新使用以前的数据,docker也可挂载宿主机磁盘目录,用来永久存储数据。

docker能安装oracle。安装方法:1、拉取Oracle官方镜像,可以利用“docker images”查看镜像;2、启动容器后利用“docker exec -it oracle11g bash”进入容器,并且编辑环境变量;3、利用“sqlplus /nolog”进入oracle命令行即可。

解决方法:1、停止docker服务后,利用“rsync -avz /var/lib/docker 大磁盘目录/docker/lib/”将docker迁移到大容量磁盘中;2、编辑“/etc/docker/daemon.json”添加指定参数,将docker的目录迁移绑定;3、重载和重启docker服务即可。

容器管理ui工具有:1、Portainer,是一个轻量级的基于Web的Docker管理GUI;2、Kitematic,是一个GUI工具,可以更快速、更简单的运行容器;3、LazyDocker,基于终端的一个可视化查询工具;4、DockStation,一款桌面应用程序;5、Docker Desktop,能为Docker设置资源限制,比如内存,CPU,磁盘镜像大小;6、Docui。

AUFS是docker最早支持的存储引擎。AUFS是一种Union File System,是文件级的存储驱动,是Docker早期用的存储驱动,是Docker18.06版本之前,Ubuntu14.04版本前推荐的,支持xfs、ext4文件。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SublimeText3 Linux new version
SublimeText3 Linux latest version

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function
