How to use the longest increasing subsequence algorithm in C++
How to use the Longest Increasing Subsequence algorithm in C requires specific code examples
The Longest Increasing Subsequence (LIS) is a classic Algorithmic problems, the solution ideas can be applied to many fields, such as data processing, graph theory, etc. In this article, I will introduce how to use the longest increasing subsequence algorithm in C and provide specific code examples.
First, let’s understand the definition of the longest increasing subsequence. Given a sequence a1, a2, …, an, we need to find a longest subsequence b1, b2, …, bm, in which the relative order of the elements of b in the original sequence is increasing. That is to say, for any i ai is satisfied, then bj > bi also exists in b. The length of the longest increasing subsequence is m.
Next, we will introduce two common algorithms for solving the longest increasing subsequence: dynamic programming algorithm and greedy algorithm.
- Dynamic programming algorithm
The dynamic programming algorithm divides the solution process of the longest increasing subsequence into multiple stages and stores the results in a two-dimensional array dp . dp[i] represents the length of the longest increasing subsequence ending with the i-th element in the sequence.
The specific solution process is as follows:
- Initialize all elements of the dp array to 1, which means that the length of the subsequence ending with each element is at least 1.
- Traverse the entire sequence from left to right, and for each position i, calculate the value of dp[i].
- For each position i, traverse its previous position j. If aj
The final result is the maximum value in the dp array.
The following is a code example using C to implement the dynamic programming algorithm:
#include<iostream> #include<vector> using namespace std; int longestIncreasingSubsequence(vector<int>& nums) { int n = nums.size(); vector<int> dp(n, 1); for (int i = 1; i < n; i++) { for (int j = 0; j < i; j++) { if (nums[j] < nums[i]) { dp[i] = max(dp[i], dp[j]+1); } } } int res = 0; for (int i = 0; i < n; i++) { res = max(res, dp[i]); } return res; } int main() { vector<int> nums = {10, 9, 2, 5, 3, 7, 101, 18}; int res = longestIncreasingSubsequence(nums); cout << "最长递增子序列的长度为:" << res << endl; return 0; }
- Greedy algorithm
The greedy algorithm is a more efficient way to solve the longest problem Methods for Increasing Subsequence Problems. This algorithm uses an auxiliary array d to save the last element of the current longest increasing subsequence. Traverse the entire sequence, and for each element, use binary search to determine its position in the auxiliary array d.
The specific solution process is as follows:
- Initialize the auxiliary array d as an empty array.
- Traverse the entire sequence from left to right, for each element a, if a is greater than the end element of d, add a to the end of d.
- If a is less than or equal to the last element of d, use binary search to find the first element in d that is greater than or equal to a, and replace it with a.
The final result is the length of the auxiliary array d.
The following is a code example for implementing the greedy algorithm in C:
#include<iostream> #include<vector> using namespace std; int longestIncreasingSubsequence(vector<int>& nums) { vector<int> d; for (auto num : nums) { int left = 0, right = d.size() - 1; while (left <= right) { int mid = left + (right - left) / 2; if (d[mid] < num) { left = mid + 1; } else { right = mid - 1; } } if (left >= d.size()) { d.push_back(num); } else { d[left] = num; } } return d.size(); } int main() { vector<int> nums = {10, 9, 2, 5, 3, 7, 101, 18}; int res = longestIncreasingSubsequence(nums); cout << "最长递增子序列的长度为:" << res << endl; return 0; }
The above is an introduction and code example of how to use the longest increasing subsequence algorithm in C. Whether it is a dynamic programming algorithm or a greedy algorithm, it can solve the longest increasing subsequence problem with a time complexity of O(n^2) or O(nlogn). Readers can choose the appropriate algorithm to use based on specific application scenarios. I hope this article can help everyone understand the longest increasing subsequence algorithm.
The above is the detailed content of How to use the longest increasing subsequence algorithm in C++. For more information, please follow other related articles on the PHP Chinese website!

C# uses automatic garbage collection mechanism, while C uses manual memory management. 1. C#'s garbage collector automatically manages memory to reduce the risk of memory leakage, but may lead to performance degradation. 2.C provides flexible memory control, suitable for applications that require fine management, but should be handled with caution to avoid memory leakage.

C still has important relevance in modern programming. 1) High performance and direct hardware operation capabilities make it the first choice in the fields of game development, embedded systems and high-performance computing. 2) Rich programming paradigms and modern features such as smart pointers and template programming enhance its flexibility and efficiency. Although the learning curve is steep, its powerful capabilities make it still important in today's programming ecosystem.

C Learners and developers can get resources and support from StackOverflow, Reddit's r/cpp community, Coursera and edX courses, open source projects on GitHub, professional consulting services, and CppCon. 1. StackOverflow provides answers to technical questions; 2. Reddit's r/cpp community shares the latest news; 3. Coursera and edX provide formal C courses; 4. Open source projects on GitHub such as LLVM and Boost improve skills; 5. Professional consulting services such as JetBrains and Perforce provide technical support; 6. CppCon and other conferences help careers

C# is suitable for projects that require high development efficiency and cross-platform support, while C is suitable for applications that require high performance and underlying control. 1) C# simplifies development, provides garbage collection and rich class libraries, suitable for enterprise-level applications. 2)C allows direct memory operation, suitable for game development and high-performance computing.

C Reasons for continuous use include its high performance, wide application and evolving characteristics. 1) High-efficiency performance: C performs excellently in system programming and high-performance computing by directly manipulating memory and hardware. 2) Widely used: shine in the fields of game development, embedded systems, etc. 3) Continuous evolution: Since its release in 1983, C has continued to add new features to maintain its competitiveness.

The future development trends of C and XML are: 1) C will introduce new features such as modules, concepts and coroutines through the C 20 and C 23 standards to improve programming efficiency and security; 2) XML will continue to occupy an important position in data exchange and configuration files, but will face the challenges of JSON and YAML, and will develop in a more concise and easy-to-parse direction, such as the improvements of XMLSchema1.1 and XPath3.1.

The modern C design model uses new features of C 11 and beyond to help build more flexible and efficient software. 1) Use lambda expressions and std::function to simplify observer pattern. 2) Optimize performance through mobile semantics and perfect forwarding. 3) Intelligent pointers ensure type safety and resource management.

C The core concepts of multithreading and concurrent programming include thread creation and management, synchronization and mutual exclusion, conditional variables, thread pooling, asynchronous programming, common errors and debugging techniques, and performance optimization and best practices. 1) Create threads using the std::thread class. The example shows how to create and wait for the thread to complete. 2) Synchronize and mutual exclusion to use std::mutex and std::lock_guard to protect shared resources and avoid data competition. 3) Condition variables realize communication and synchronization between threads through std::condition_variable. 4) The thread pool example shows how to use the ThreadPool class to process tasks in parallel to improve efficiency. 5) Asynchronous programming uses std::as


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Chinese version
Chinese version, very easy to use

Atom editor mac version download
The most popular open source editor

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

Zend Studio 13.0.1
Powerful PHP integrated development environment

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software