search
HomeTechnology peripheralsAIRewritten title: Byte launches Vi-PRoM visual pre-training program to improve robot operation success rate and effect

In recent years, visual pre-training on large-scale real-world data has made significant progress, showing great potential in robot learning based on pixel observations. However, these studies differ in terms of pre-training data, methods, and models. Therefore, which type of data, pre-training methods and models can better assist robot control is still an open question

Based on this, researchers from the ByteDance Research team started fromThree basic perspectives of pre-training data set, model architecture and training method Comprehensively studied the impact of visual pre-training strategies on robot operation tasks, and provided some important experimental results that are beneficial to robot learning. In addition, they proposed a vision pre-training scheme for robot operation called Vi-PRoM, which combines self-supervised learning and supervised learning. The former uses contrastive learning to obtain latent patterns from large-scale unlabeled data, while the latter aims to learn visual semantics and temporal dynamic changes. A large number of robot operation experiments conducted in various simulation environments and real robots have proven the superiority of this solution.

Rewritten title: Byte launches Vi-PRoM visual pre-training program to improve robot operation success rate and effect

  • ##Paper address: https://arxiv.org/pdf/2308.03620.pdf
  • Project address: https://explore-pretrain-robot.github.io/

Benchmark Research

Rewritten title: Byte launches Vi-PRoM visual pre-training program to improve robot operation success rate and effect

##Pre-training data

EgoNet is more powerful than ImageNet. Pretrain visual encoders on different datasets (i.e., ImageNet and EgoNet) through contrastive learning methods and observe their performance in robot manipulation tasks. As can be seen from Table 1 below, the model pre-trained on EgoNet achieved better performance on robot operation tasks. Obviously, robots prefer the interactive knowledge and temporal relationships contained in videos in terms of operating tasks. In addition, the egocentric natural images in EgoNet have more global context about the world, which means that richer visual features can be learned

Rewritten title: Byte launches Vi-PRoM visual pre-training program to improve robot operation success rate and effect

##Model structure

ResNet-50 performs better. As can be seen from Table 2 below, ResNet-50 and ResNet-101 perform better than ResNet-34 on robot manipulation tasks. Furthermore, the performance does not improve as the model increases from ResNet-50 to ResNet-101.

Rewritten title: Byte launches Vi-PRoM visual pre-training program to improve robot operation success rate and effect

Pre-training method

Needs to be rewritten according to the meaning of the original text The content is: "Contrastive learning is preferred for pre-training methods. As shown in Table 3 below, MoCo-v3 outperforms MAE on both ImageNet and EgoNet datasets, which proves that contrastive learning is more effective compared to mask image modeling. In addition , the visual semantics obtained through contrastive learning are more important for robot operation than the structural information learned through mask image modeling." Rewritten content: Contrastive learning is the preferred pre-training method. As can be seen from Table 3, MoCo-v3 outperforms MAE on both ImageNet and EgoNet datasets, indicating that contrastive learning is more effective than mask image modeling. In addition, the visual semantics obtained by contrastive learning are more important for robot operation than the structural information learned by mask image modeling

Rewritten title: Byte launches Vi-PRoM visual pre-training program to improve robot operation success rate and effectAlgorithm Introduction

Based on the above exploration, this research proposes a visual pre-training solution for robot operation (Vi-PRoM). This solution extracts a comprehensive visual representation of robot operations by pre-training ResNet-50 on the EgoNet dataset. Specifically, we first use contrastive learning to obtain the interaction patterns between people and objects from the EgoNet data set through self-supervision. Then, two additional learning objectives, namely visual semantic prediction and temporal dynamic prediction, are proposed to further enrich the encoder's representation. The figure below shows the basic process of Vi-PRoM. Notably, this study does not require manual labeling to learn visual semantics and temporal dynamics

Rewritten title: Byte launches Vi-PRoM visual pre-training program to improve robot operation success rate and effect

Experimental results

This research work conducted extensive experiments on two simulation environments (Franka Kitchen and MetaWorld). Experimental results show that the proposed pre-training scheme outperforms previous state-of-the-art methods in robot operation. The results of the ablation experiment are shown in the table below, which can prove the importance of visual semantic learning and temporal dynamic learning for robot operation. Furthermore, when both learning targets are absent, the success rate of Vi-PRoM drops significantly, demonstrating the effectiveness of the collaboration between visual semantic learning and temporal dynamic learning.

Rewritten title: Byte launches Vi-PRoM visual pre-training program to improve robot operation success rate and effect

Rewritten title: Byte launches Vi-PRoM visual pre-training program to improve robot operation success rate and effect

This work also investigates the scalability of Vi-PRoM. As shown in the figure below on the left, in the Franka Kitchen and MetaWorld simulation environments, the success rate of Vi-PRoM steadily improves as the size of the demo data increases. After training on a larger expert demonstration dataset, the Vi-PRoM model shows its scalability on robot manipulation tasks.

Rewritten title: Byte launches Vi-PRoM visual pre-training program to improve robot operation success rate and effect


Rewritten title: Byte launches Vi-PRoM visual pre-training program to improve robot operation success rate and effect

# Due to Vi-PRoM’s powerful visual representation capabilities, real The robot can successfully open drawers and cabinet doors

The experimental results on Franka Kitchen show that Vi-PRoM has a higher success rate and is more efficient than R3M in five tasks. High degree of action completion.

R3M:

Rewritten title: Byte launches Vi-PRoM visual pre-training program to improve robot operation success rate and effectRewritten title: Byte launches Vi-PRoM visual pre-training program to improve robot operation success rate and effectRewritten title: Byte launches Vi-PRoM visual pre-training program to improve robot operation success rate and effectRewritten title: Byte launches Vi-PRoM visual pre-training program to improve robot operation success rate and effectRewritten title: Byte launches Vi-PRoM visual pre-training program to improve robot operation success rate and effect


##Vi-PRoM:

Rewritten title: Byte launches Vi-PRoM visual pre-training program to improve robot operation success rate and effectRewritten title: Byte launches Vi-PRoM visual pre-training program to improve robot operation success rate and effectRewritten title: Byte launches Vi-PRoM visual pre-training program to improve robot operation success rate and effectRewritten title: Byte launches Vi-PRoM visual pre-training program to improve robot operation success rate and effectRewritten title: Byte launches Vi-PRoM visual pre-training program to improve robot operation success rate and effect##On MetaWorld, due to Vi- PRoM's visual representation learns good semantic and dynamic features, which can be better used for action prediction, so compared to R3M, Vi-PRoM requires fewer steps to complete the operation.

R3M:

Rewritten title: Byte launches Vi-PRoM visual pre-training program to improve robot operation success rate and effect

#Vi-PRoM:

Rewritten title: Byte launches Vi-PRoM visual pre-training program to improve robot operation success rate and effectRewritten title: Byte launches Vi-PRoM visual pre-training program to improve robot operation success rate and effect

The above is the detailed content of Rewritten title: Byte launches Vi-PRoM visual pre-training program to improve robot operation success rate and effect. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
从VAE到扩散模型:一文解读以文生图新范式从VAE到扩散模型:一文解读以文生图新范式Apr 08, 2023 pm 08:41 PM

1 前言在发布DALL·E的15个月后,OpenAI在今年春天带了续作DALL·E 2,以其更加惊艳的效果和丰富的可玩性迅速占领了各大AI社区的头条。近年来,随着生成对抗网络(GAN)、变分自编码器(VAE)、扩散模型(Diffusion models)的出现,深度学习已向世人展现其强大的图像生成能力;加上GPT-3、BERT等NLP模型的成功,人类正逐步打破文本和图像的信息界限。在DALL·E 2中,只需输入简单的文本(prompt),它就可以生成多张1024*1024的高清图像。这些图像甚至

找不到中文语音预训练模型?中文版 Wav2vec 2.0和HuBERT来了找不到中文语音预训练模型?中文版 Wav2vec 2.0和HuBERT来了Apr 08, 2023 pm 06:21 PM

Wav2vec 2.0 [1],HuBERT [2] 和 WavLM [3] 等语音预训练模型,通过在多达上万小时的无标注语音数据(如 Libri-light )上的自监督学习,显著提升了自动语音识别(Automatic Speech Recognition, ASR),语音合成(Text-to-speech, TTS)和语音转换(Voice Conversation,VC)等语音下游任务的性能。然而这些模型都没有公开的中文版本,不便于应用在中文语音研究场景。 WenetSpeech [4] 是

普林斯顿陈丹琦:如何让「大模型」变小普林斯顿陈丹琦:如何让「大模型」变小Apr 08, 2023 pm 04:01 PM

“Making large models smaller”这是很多语言模型研究人员的学术追求,针对大模型昂贵的环境和训练成本,陈丹琦在智源大会青源学术年会上做了题为“Making large models smaller”的特邀报告。报告中重点提及了基于记忆增强的TRIME算法和基于粗细粒度联合剪枝和逐层蒸馏的CofiPruning算法。前者能够在不改变模型结构的基础上兼顾语言模型困惑度和检索速度方面的优势;而后者可以在保证下游任务准确度的同时实现更快的处理速度,具有更小的模型结构。陈丹琦 普

解锁CNN和Transformer正确结合方法,字节跳动提出有效的下一代视觉Transformer解锁CNN和Transformer正确结合方法,字节跳动提出有效的下一代视觉TransformerApr 09, 2023 pm 02:01 PM

由于复杂的注意力机制和模型设计,大多数现有的视觉 Transformer(ViT)在现实的工业部署场景中不能像卷积神经网络(CNN)那样高效地执行。这就带来了一个问题:视觉神经网络能否像 CNN 一样快速推断并像 ViT 一样强大?近期一些工作试图设计 CNN-Transformer 混合架构来解决这个问题,但这些工作的整体性能远不能令人满意。基于此,来自字节跳动的研究者提出了一种能在现实工业场景中有效部署的下一代视觉 Transformer——Next-ViT。从延迟 / 准确性权衡的角度看,

Stable Diffusion XL 现已推出—有什么新功能,你知道吗?Stable Diffusion XL 现已推出—有什么新功能,你知道吗?Apr 07, 2023 pm 11:21 PM

3月27号,Stability AI的创始人兼首席执行官Emad Mostaque在一条推文中宣布,Stable Diffusion XL 现已可用于公开测试。以下是一些事项:“XL”不是这个新的AI模型的官方名称。一旦发布稳定性AI公司的官方公告,名称将会更改。与先前版本相比,图像质量有所提高与先前版本相比,图像生成速度大大加快。示例图像让我们看看新旧AI模型在结果上的差异。Prompt: Luxury sports car with aerodynamic curves, shot in a

​什么是Transformer机器学习模型?​什么是Transformer机器学习模型?Apr 08, 2023 pm 06:31 PM

译者 | 李睿审校 | 孙淑娟​近年来, Transformer 机器学习模型已经成为深度学习和深度神经网络技术进步的主要亮点之一。它主要用于自然语言处理中的高级应用。谷歌正在使用它来增强其搜索引擎结果。OpenAI 使用 Transformer 创建了著名的 GPT-2和 GPT-3模型。自从2017年首次亮相以来,Transformer 架构不断发展并扩展到多种不同的变体,从语言任务扩展到其他领域。它们已被用于时间序列预测。它们是 DeepMind 的蛋白质结构预测模型 AlphaFold

五年后AI所需算力超100万倍!十二家机构联合发表88页长文:「智能计算」是解药五年后AI所需算力超100万倍!十二家机构联合发表88页长文:「智能计算」是解药Apr 09, 2023 pm 07:01 PM

人工智能就是一个「拼财力」的行业,如果没有高性能计算设备,别说开发基础模型,就连微调模型都做不到。但如果只靠拼硬件,单靠当前计算性能的发展速度,迟早有一天无法满足日益膨胀的需求,所以还需要配套的软件来协调统筹计算能力,这时候就需要用到「智能计算」技术。最近,来自之江实验室、中国工程院、国防科技大学、浙江大学等多达十二个国内外研究机构共同发表了一篇论文,首次对智能计算领域进行了全面的调研,涵盖了理论基础、智能与计算的技术融合、重要应用、挑战和未来前景。论文链接:​https://spj.scien

AI模型告诉你,为啥巴西最可能在今年夺冠!曾精准预测前两届冠军AI模型告诉你,为啥巴西最可能在今年夺冠!曾精准预测前两届冠军Apr 09, 2023 pm 01:51 PM

说起2010年南非世界杯的最大网红,一定非「章鱼保罗」莫属!这只位于德国海洋生物中心的神奇章鱼,不仅成功预测了德国队全部七场比赛的结果,还顺利地选出了最终的总冠军西班牙队。不幸的是,保罗已经永远地离开了我们,但它的「遗产」却在人们预测足球比赛结果的尝试中持续存在。在艾伦图灵研究所(The Alan Turing Institute),随着2022年卡塔尔世界杯的持续进行,三位研究员Nick Barlow、Jack Roberts和Ryan Chan决定用一种AI算法预测今年的冠军归属。预测模型图

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment