search
HomeBackend DevelopmentC++Merge sort tree in C++

Merge sort tree in C++

Sep 12, 2023 pm 05:33 PM
merge sortTree.

Merge sort tree in C++

We are given an integer array, a set of segment start and end pointers and a key value and the problem statement here is to find all the values ​​in the given range which are smaller than or equal to the given key value.

Let us understand with example

Input − arr[] = {7, 8 , 1, 4 , 6 , 8 , 10 }

Segment 1: start = 2, end = 4, k = 2

Segment 2: start = 1, end = 6, k = 3

Output − Count of number which are smaller than or equal to key value in the given range are 2 6

Explanation − [8, 1, 4] represents the range from 2 to 4 and 2 is the 2nd smallest number in the range [7, 8, 1, 4, 6, 8] represents the range from 1 to 6, 6 is the third smallest number in the range

Input - arr[] = {2 , 7 , 9, 4 , 6 , 5 , 1 |

Paragraph 1: starting position=3, ending position=6, k=4

Paragraph 2: starting position=2 , end position=5, k=3

Output - The number of numbers less than or equal to the key value in the given range is: 9 7

Explanation - [9, 4, 6, 5] represents the range from 3 to 6, 9 is the fourth smallest number in the given range [7, 9, 4, 6] represents the range from 2 to 4, 7 is the 3rd smallest number in the given segment range

The method used in the following program is as follows:

  • Declare an array of integer type. Calculate the size of the array. Declare a variable of vector type, forming a pair of integer types. Start a FOR loop to push data from the array into the vector.

  • Sort the given vector. Create a vector array of type integer with size MAX.

  • Call the function generateTree(1, 0, size - 1, vec, tree), and set getSmallestIndex to queryWrapper(2, 5, 2, size, vec, tree).

  • Print input[getSmallestIndex].

  • Set getSmallestIndex to call function queryWrapper(1, 6, 4, size, vec, tree).

  • Inside the function generateTree(int treeIndex, int leftIndex, int rightIndex, vector > &a, vector tree[])

    • Check IF leftIndex to rightIndex, then set tree[treeIndex].push_back(a[leftIndex].second) and return

    • Set midValue to (leftIndex rightIndex) / 2and call generateTree(2 * treeIndex, leftIndex, midValue, a, tree), generateTree(2 * treeIndex 1, midValue 1, rightIndex, a, tree) and merge(tree[2 * treeIndex].begin(), tree[2 * treeIndex].end(), tree[2 * treeIndex 1 ].begin(). Set tree[2 * treeIndex 1].end(),back_inserter(tree[treeIndex]))

  • Inside the function as int calculateKSmallest(int startIndex, int endIndex, int queryStart, int queryEnd, int treeIndex, int key, vector tree[])

    • Check IF startIndex to endIndex then return tree[treeIndex][0 ]

    • Set mid to (startIndex endIndex) / 2, last_in_query_range to (upper_bound(tree[2 * treeIndex].begin(),tree[2 * treeIndex].end(), queryEnd) - tree[2 * treeIndex].begin())

    • set first_in_query_range to (lower_bound(tree[2 * treeIndex].begin(),tree[2 * treeIndex]. end(), queryStart) - tree[2 * treeIndex].begin()) and M to last_in_query_range - first_in_query_range

    • Check IF M greater than equals to key then return calculateKSmallest(startIndex, mid, queryStart,queryEnd, 2 * treeIndex, key, tree)

    • ELSE, then return calculateKSmallest(mid 1, endIndex, queryStart, queryEnd, 2 * treeIndex 1, key - M, tree).

  • Inside the function int queryWrapper(int queryStart, int queryEnd, int key, int n, vector > &a , vectortree[])

    • return call to the function calculateKSmallest(0, n - 1, queryStart - 1, queryEnd - 1, 1, key, tree)

Example

#include <bits/stdc++.h>
using namespace std;
const int MAX = 1000;
void generateTree(int treeIndex, int leftIndex, int rightIndex, vector<pair<int, int> > &a, vector<int> tree[]){
   if (leftIndex == rightIndex){
      tree[treeIndex].push_back(a[leftIndex].second);
      return;
   }
   int midValue = (leftIndex + rightIndex) / 2;
   generateTree(2 * treeIndex, leftIndex, midValue, a, tree);
   generateTree(2 * treeIndex + 1, midValue + 1, rightIndex, a, tree);
   merge(tree[2 * treeIndex].begin(), tree[2 * treeIndex].end(), tree[2 * treeIndex + 1].begin(),
   tree[2 * treeIndex + 1].end(), back_inserter(tree[treeIndex]));
}
int calculateKSmallest(int startIndex, int endIndex, int queryStart, int queryEnd, int treeIndex, int key, vector<int> tree[]){
      if (startIndex == endIndex){
         return tree[treeIndex][0];
      }
      int mid = (startIndex + endIndex) / 2;
      int last_in_query_range = (upper_bound(tree[2 * treeIndex].begin(), tree[2 * treeIndex].end(), queryEnd) - tree[2 * treeIndex].begin());
      int first_in_query_range = (lower_bound(tree[2 * treeIndex].begin(), tree[2 * treeIndex].end(),queryStart) - tree[2 * treeIndex].begin());
      int M = last_in_query_range - first_in_query_range;
      if (M >= key){
         return calculateKSmallest(startIndex, mid, queryStart, queryEnd, 2 * treeIndex, key, tree);
      }
      else {
         return calculateKSmallest(mid + 1, endIndex, queryStart,queryEnd, 2 * treeIndex + 1, key - M, tree);
      }
}
int queryWrapper(int queryStart, int queryEnd, int key, int n,
   vector<pair<int, int> > &a, vector<int> tree[]){
      return calculateKSmallest(0, n - 1, queryStart - 1, queryEnd - 1, 1, key, tree);
}
int main(){
   int input[] = { 7, 8 , 1, 4 , 6 , 8 , 10 };
   int size = sizeof(input)/sizeof(input[0]);
   vector<pair<int, int> > vec;
   for (int i = 0; i < size; i++) {
      vec.push_back(make_pair(input[i], i));
   }
   sort(vec.begin(), vec.end());
   vector<int> tree[MAX];
   generateTree(1, 0, size - 1, vec, tree);

   cout<<"Count of number which are smaller than or equal to key value in the given range are:"<<endl;

   int getSmallestIndex = queryWrapper(2, 4, 2, size, vec, tree);
   cout << input[getSmallestIndex] << endl;
   getSmallestIndex = queryWrapper(1, 6, 3, size, vec, tree);
   cout << input[getSmallestIndex] << endl;
   return 0;
}

Output

If we run the above code, the following output will be generated

Count of number which are smaller than or equal to key value in the given range are:
4
6

The above is the detailed content of Merge sort tree in C++. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:tutorialspoint. If there is any infringement, please contact admin@php.cn delete
Mastering Polymorphism in C  : A Deep DiveMastering Polymorphism in C : A Deep DiveMay 14, 2025 am 12:13 AM

Mastering polymorphisms in C can significantly improve code flexibility and maintainability. 1) Polymorphism allows different types of objects to be treated as objects of the same base type. 2) Implement runtime polymorphism through inheritance and virtual functions. 3) Polymorphism supports code extension without modifying existing classes. 4) Using CRTP to implement compile-time polymorphism can improve performance. 5) Smart pointers help resource management. 6) The base class should have a virtual destructor. 7) Performance optimization requires code analysis first.

C   Destructors vs Garbage Collectors : What are the differences?C Destructors vs Garbage Collectors : What are the differences?May 13, 2025 pm 03:25 PM

C destructorsprovideprecisecontroloverresourcemanagement,whilegarbagecollectorsautomatememorymanagementbutintroduceunpredictability.C destructors:1)Allowcustomcleanupactionswhenobjectsaredestroyed,2)Releaseresourcesimmediatelywhenobjectsgooutofscop

C   and XML: Integrating Data in Your ProjectsC and XML: Integrating Data in Your ProjectsMay 10, 2025 am 12:18 AM

Integrating XML in a C project can be achieved through the following steps: 1) parse and generate XML files using pugixml or TinyXML library, 2) select DOM or SAX methods for parsing, 3) handle nested nodes and multi-level properties, 4) optimize performance using debugging techniques and best practices.

Using XML in C  : A Guide to Libraries and ToolsUsing XML in C : A Guide to Libraries and ToolsMay 09, 2025 am 12:16 AM

XML is used in C because it provides a convenient way to structure data, especially in configuration files, data storage and network communications. 1) Select the appropriate library, such as TinyXML, pugixml, RapidXML, and decide according to project needs. 2) Understand two ways of XML parsing and generation: DOM is suitable for frequent access and modification, and SAX is suitable for large files or streaming data. 3) When optimizing performance, TinyXML is suitable for small files, pugixml performs well in memory and speed, and RapidXML is excellent in processing large files.

C# and C  : Exploring the Different ParadigmsC# and C : Exploring the Different ParadigmsMay 08, 2025 am 12:06 AM

The main differences between C# and C are memory management, polymorphism implementation and performance optimization. 1) C# uses a garbage collector to automatically manage memory, while C needs to be managed manually. 2) C# realizes polymorphism through interfaces and virtual methods, and C uses virtual functions and pure virtual functions. 3) The performance optimization of C# depends on structure and parallel programming, while C is implemented through inline functions and multithreading.

C   XML Parsing: Techniques and Best PracticesC XML Parsing: Techniques and Best PracticesMay 07, 2025 am 12:06 AM

The DOM and SAX methods can be used to parse XML data in C. 1) DOM parsing loads XML into memory, suitable for small files, but may take up a lot of memory. 2) SAX parsing is event-driven and is suitable for large files, but cannot be accessed randomly. Choosing the right method and optimizing the code can improve efficiency.

C   in Specific Domains: Exploring Its StrongholdsC in Specific Domains: Exploring Its StrongholdsMay 06, 2025 am 12:08 AM

C is widely used in the fields of game development, embedded systems, financial transactions and scientific computing, due to its high performance and flexibility. 1) In game development, C is used for efficient graphics rendering and real-time computing. 2) In embedded systems, C's memory management and hardware control capabilities make it the first choice. 3) In the field of financial transactions, C's high performance meets the needs of real-time computing. 4) In scientific computing, C's efficient algorithm implementation and data processing capabilities are fully reflected.

Debunking the Myths: Is C   Really a Dead Language?Debunking the Myths: Is C Really a Dead Language?May 05, 2025 am 12:11 AM

C is not dead, but has flourished in many key areas: 1) game development, 2) system programming, 3) high-performance computing, 4) browsers and network applications, C is still the mainstream choice, showing its strong vitality and application scenarios.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment