


Python program to multiply two matrices using multidimensional arrays
A matrix is a set of numbers arranged in rows and columns. A matrix with m rows and n columns is called an m X n matrix, and m and n are called its dimensions. A matrix is a two-dimensional array created in Python using lists or NumPy arrays.
In general, matrix multiplication can be done by multiplying the rows of the first matrix by the columns of the second matrix. Here, the number of columns of the first matrix should be equal to the number of rows of the second matrix.
Input and output scenarios
Suppose we have two matrices A and B, the dimensions of these two matrices are 2X3 and 3X2 respectively. The resulting matrix after multiplication will have 2 rows and 1 column.
[b1, b2] [a1, a2, a3] * [b3, b4] = [a1*b1+a2*b2+a3*a3] [a4, a5, a6] [b5, b6] [a4*b2+a5*b4+a6*b6]
In addition, we can also perform element-wise multiplication of matrices. In this case, the two input matrices must have the same number of rows and columns.
[a11, a12, a13] [b11, b12, b13] [a11*b11, a12*b12, a13*b13] [a21, a22, a23] * [b21, b22, b23] = [a21*b21, a22*b22, a23*b23] [a31, a32, a33] [b31, b32, b33] [a31*b31, a32*b32, a33*b33]
Use For Loop
With nested for loops, we will perform a multiplication operation on two matrices and store the result in the third matrix.
Example
In this example, we will initialize an all-zero result matrix to store the multiplication results.
# Defining the matrix using multidimensional arrays matrix_a = [[1,2,3], [4,1,2], [2,3,1]] matrix_b = [[1,2,3,2], [2,3,6,3], [3,1,4,2]] #function for displaying matrix def display(matrix): for row in matrix: print(row) print() # Display two input matrices print('The first matrix is defined as:') display(matrix_a) print('The second matrix is defined as:') display(matrix_b) # Initializing Matrix with all 0s result = [[0, 0, 0, 0],[0, 0, 0, 0],[0, 0, 0, 0]] # multiply two matrices for i in range(len(matrix_a)): # iterate through rows for j in range(len(matrix_b[0])): # iterate through columns for k in range(len(matrix_b)): result[i][j] = matrix_a[i][k] * matrix_b[k][j] print('The multiplication of two matrices is:') display(result)
Output
The first matrix is defined as: [1, 2, 3] [4, 1, 2] [2, 3, 1] The second matrix is defined as: [1, 2, 3, 2] [2, 3, 6, 3] [3, 1, 4, 2] The multiplication of two matrices is: [9, 3, 12, 6] [6, 2, 8, 4] [3, 1, 4, 2]
The number of rows and columns of the first matrix (matrix_a) is 3, and the number of rows and columns of the second matrix (matrix_b) is 3. The resulting matrix after multiplying these two matrices (matrix_a, matrix_b) will have 3 rows and 4 columns (i.e. 3X4).
Example
The numpy.array() function is used here to create the matrix so that we can simply do matrix multiplication using the @ operator.
import numpy as np # Defining the matrix using numpy array matrix_a = np.array([[1,2,5], [1,0,6], [9,8,0]]) matrix_b = np.array([[0,3,5], [4,6,9], [1,8,0]]) # Display two input matrices print('The first matrix is defined as:') print(matrix_a) print('The second matrix is defined as:') print(matrix_b) # multiply two matrices result = matrix_a @ matrix_b print('The multiplication of two matrices is:') print(result)
Output
The first matrix is defined as: [[1 2 5] [1 0 6] [9 8 0]] The second matrix is defined as: [[0 3 5] [4 6 9] [1 8 0]] The multiplication of two matrices is: [[ 13 55 23] [ 6 51 5] [ 32 75 117]]
The multiplication operator @ is available starting from Python 3.5 version, otherwise, we can use the numpy.dot() function.
Example
In this example, we will perform element-wise multiplication of two numpy arrays using the (*) asterisk operator.
import numpy as np # Defining the matrix using numpy array matrix_a = np.array([[1,2,5], [1,0,6], [9,8,0]]) matrix_b = np.array([[0,3,5], [4,6,9], [1,8,0]]) # Display two input matrices print('The first matrix is defined as:') print(matrix_a) print('The second matrix is defined as:') print(matrix_b) # multiply elements of two matrices result = matrix_a * matrix_b print('The element-wise multiplication of two matrices is:') print(result)
Output
The first matrix is defined as: [[1 2 5] [1 0 6] [9 8 0]] The second matrix is defined as: [[0 3 5] [4 6 9] [1 8 0]] The element-wise multiplication of two matrices is: [[ 0 6 25] [ 4 0 54] [ 9 64 0]]
The above is the detailed content of Python program to multiply two matrices using multidimensional arrays. For more information, please follow other related articles on the PHP Chinese website!

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

Python's real-world applications include data analytics, web development, artificial intelligence and automation. 1) In data analysis, Python uses Pandas and Matplotlib to process and visualize data. 2) In web development, Django and Flask frameworks simplify the creation of web applications. 3) In the field of artificial intelligence, TensorFlow and PyTorch are used to build and train models. 4) In terms of automation, Python scripts can be used for tasks such as copying files.

Python is widely used in data science, web development and automation scripting fields. 1) In data science, Python simplifies data processing and analysis through libraries such as NumPy and Pandas. 2) In web development, the Django and Flask frameworks enable developers to quickly build applications. 3) In automated scripts, Python's simplicity and standard library make it ideal.

Python's flexibility is reflected in multi-paradigm support and dynamic type systems, while ease of use comes from a simple syntax and rich standard library. 1. Flexibility: Supports object-oriented, functional and procedural programming, and dynamic type systems improve development efficiency. 2. Ease of use: The grammar is close to natural language, the standard library covers a wide range of functions, and simplifies the development process.

Python is highly favored for its simplicity and power, suitable for all needs from beginners to advanced developers. Its versatility is reflected in: 1) Easy to learn and use, simple syntax; 2) Rich libraries and frameworks, such as NumPy, Pandas, etc.; 3) Cross-platform support, which can be run on a variety of operating systems; 4) Suitable for scripting and automation tasks to improve work efficiency.

Yes, learn Python in two hours a day. 1. Develop a reasonable study plan, 2. Select the right learning resources, 3. Consolidate the knowledge learned through practice. These steps can help you master Python in a short time.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 English version
Recommended: Win version, supports code prompts!

SublimeText3 Chinese version
Chinese version, very easy to use

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool